I have a datetime attribute:
d = {
\'DOB\': pd.Series([
datetime.datetime(2014, 7, 9),
datetime.datetime(2014, 7, 15),
np.datetim
You can convert epoch time using astype
with np.int64 and converting back to datetime with pd.to_datetime
:
pd.to_datetime(df_test.DOB.dropna().astype(np.int64).mean())
Output:
Timestamp('2014-07-12 00:00:00')
Datetime math supports some standard operations:
a = datetime.datetime(2014, 7, 9)
b = datetime.datetime(2014, 7, 15)
c = (b - a)/2
# here c will be datetime.timedelta(3)
a + c
Out[7]: datetime.datetime(2014, 7, 12, 0, 0)
So you can write a function that, given two datetimes, subtracts the lesser form the greater and adds half of the difference to the lesser. Apply this function to your dataframe, and shazam!
As of pandas=0.25, it is possible to compute the mean of a datetime series.
In [1]: import pandas as pd
...: import numpy as np
In [2]: s = pd.Series([
...: pd.datetime(2014, 7, 9),
...: pd.datetime(2014, 7, 15),
...: np.datetime64('NaT')])
In [3]: s.mean()
Out[3]: Timestamp('2014-07-12 00:00:00')
However, note that applying mean to a pandas dataframe currently ignores columns with a datetime series.
You can take the mean of Timedelta
. So find the minimum value and subtract it from the series to get a series of Timedelta
. Then take the mean and add it back to the minimum.
dob = df_test.DOB
m = dob.min()
(m + (dob - m).mean()).to_pydatetime()
datetime.datetime(2014, 7, 12, 0, 0)
One-line
df_test.DOB.pipe(lambda d: (lambda m: m + (d - m).mean())(d.min())).to_pydatetime()
To @ALollz point
I use the epoch pd.Timestamp(0)
instead of min
df_test.DOB.pipe(lambda d: (lambda m: m + (d - m).mean())(pd.Timestamp(0))).to_pydatetime()
You could work with unix
time if you want. This is defined as the total number of seconds (for instance) since 1970-01-01
. With that, all of your times are simply floats, so it's very easy to do simple math on the columns.
import pandas as pd
df_test['unix_time'] = (df_test.DOB - pd.to_datetime('1970-01-01')).dt.total_seconds()
df_test['unix_time'].mean()
#1405123200.0
# You want it in date, so just convert back
pd.to_datetime(df_test['unix_time'].mean(), origin='unix', unit='s')
#Timestamp('2014-07-12 00:00:00')