My initial intent was to convert a signed primitive number to its hexadecimal representation in a way that preserves the number\'s sign. It turns out that the current implem
This is like Francis Gagné's answer, but made generic to handle i8
through i128
.
use std::fmt::{self, Formatter, UpperHex};
use num_traits::Signed;
struct ReallySigned<T: PartialOrd + Signed + UpperHex>(T);
impl<T: PartialOrd + Signed + UpperHex> UpperHex for ReallySigned<T> {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
let prefix = if f.alternate() { "0x" } else { "" };
let bare_hex = format!("{:X}", self.0.abs());
f.pad_integral(self.0 >= T::zero(), prefix, &bare_hex)
}
}
fn main() {
println!("{:#X}", -0x12345678);
println!("{:#X}", ReallySigned(-0x12345678));
}
Is there a way to do this formatting procedure while still adhering to a standard Formatter?
Yes, but you need to make a newtype in order to provide a distinct implementation of UpperHex
. Here's an implementation that respects the +
, #
and 0
flags (and possibly more, I haven't tested):
use std::fmt::{self, Formatter, UpperHex};
struct ReallySigned(i32);
impl UpperHex for ReallySigned {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
let prefix = if f.alternate() { "0x" } else { "" };
let bare_hex = format!("{:X}", self.0.abs());
f.pad_integral(self.0 >= 0, prefix, &bare_hex)
}
}
fn main() {
for &v in &[15, -15] {
for &v in &[&v as &UpperHex, &ReallySigned(v) as &UpperHex] {
println!("Value: {:X}", v);
println!("Value: {:08X}", v);
println!("Value: {:+08X}", v);
println!("Value: {:#08X}", v);
println!("Value: {:+#08X}", v);
println!();
}
}
}