I have a pandas dataframe similar to this:
Col1 ABC
0 XYZ A
1 XYZ B
2 XYZ C
By using the pandas get_dummies()
If you have a pd.DataFrame like this:
>>> df
Col1 A B C
0 XYZ 1 0 0
1 XYZ 0 1 0
2 XYZ 0 0 1
You can always do something like this:
>>> df.apply(lambda s: list(s[1:]), axis=1)
0 [1, 0, 0]
1 [0, 1, 0]
2 [0, 0, 1]
dtype: object
Note, this is essentially a for-loop on the rows. Note, columns do not have list
data-types, they must be object
, which will make your data-frame operations not able to take advantage of the speed benefits of numpy
.
Here is an example of using sklearn.preprocessing.LabelBinarizer:
In [361]: from sklearn.preprocessing import LabelBinarizer
In [362]: lb = LabelBinarizer()
In [363]: df['new'] = lb.fit_transform(df['ABC']).tolist()
In [364]: df
Out[364]:
Col1 ABC new
0 XYZ A [1, 0, 0]
1 XYZ B [0, 1, 0]
2 XYZ C [0, 0, 1]
Pandas alternative:
In [370]: df['new'] = df['ABC'].str.get_dummies().values.tolist()
In [371]: df
Out[371]:
Col1 ABC new
0 XYZ A [1, 0, 0]
1 XYZ B [0, 1, 0]
2 XYZ C [0, 0, 1]
You can just use tolist()
:
df['ABC'] = pd.get_dummies(df.ABC).values.tolist()
Col1 ABC
0 XYZ [1, 0, 0]
1 XYZ [0, 1, 0]
2 XYZ [0, 0, 1]
if you have a data-frame df
with categorical column ABC
then you could use to create a new column of one-hot vectors
df['new_column'] = list(pandas.get_dummies(df['AB]).get_values())