I would like to create a union of two maps whose key type is the same and whose value type is a collection of elements, but whose types are different.
Consider the f
This appears to work.
val peopleToChildrenAndDogs: Map[String, (Seq[Child], Seq[Pet])] = {
(peopleToChildren.keySet ++ peopleToPets.keySet).map { k =>
k -> (peopleToChildren.getOrElse(k, Seq())
,peopleToPets.getOrElse(k, Seq()))
}.toMap
}
Get all the keys. For every key do a getOrElse()
on each of the feeder Maps.
To answer my own question, the following is the way that I solved it, but it seems overly long and complex:
Welcome to the Ammonite Repl 1.0.2
(Scala 2.11.11 Java 1.8.0_91)
If you like Ammonite, please support our development at www.patreon.com/lihaoyi
@ case class Child(name: String)
defined class Child
@ val peopleToChildren: Map[String, Seq[Child]] =
Map("max" -> Seq(Child("a"), Child("b")),
"yaneeve" -> Seq(Child("y"), Child("d")))
peopleToChildren: Map[String, Seq[Child]] = Map("max" -> List(Child("a"), Child("b")), "yaneeve" -> List(Child("y"), Child("d")))
@
@ case class Pet(name: String)
defined class Pet
@ val peopleToPets: Map[String, Seq[Pet]] =
Map("max" -> Seq(Pet("fifi")),
"jill" -> Seq(Pet("bobo"), Pet("jack"), Pet("Roger rabbit")))
peopleToPets: Map[String, Seq[Pet]] = Map("max" -> List(Pet("fifi")), "jill" -> List(Pet("bobo"), Pet("jack"), Pet("Roger rabbit")))
@
@ val peopleToChildrenAndDogs: Map[String, (Seq[Child], Seq[Pet])] = {
// people may have children
// people may have pets
// would like a map from people to a tuple with a potentially empty list of children and a
// potentially empty list of pets
val paddedPeopleToChildren = peopleToChildren.map{ case (person, children) => person -> (children, List.empty[Pet])}
val paddedPeopleToPets = peopleToPets.map{ case (person, pets) => person ->(List.empty[Child], pets)}
val notGoodEnough = paddedPeopleToPets ++ paddedPeopleToChildren // this is here to show that it does not work since it overwrites the value of a key - Map(max -> (List(Child(a), Child(b)),List()), jill -> (List(),List(Pet(bobo), Pet(jack), Pet(Roger rabbit))), yaneeve -> (List(Child(y), Child(d)),List()))
val allSeq = paddedPeopleToPets.toSeq ++ paddedPeopleToChildren.toSeq
val grouped = allSeq.groupBy(_._1).mapValues(_.map { case (_, tup) => tup })
val solution = grouped.mapValues(_.unzip).mapValues {case (wrappedChildren, wrappedPets) => (wrappedChildren.flatten, wrappedPets.flatten)}
solution
}
peopleToChildrenAndDogs: Map[String, (Seq[Child], Seq[Pet])] = Map(
"yaneeve" -> (ArrayBuffer(Child("y"), Child("d")), ArrayBuffer()),
"max" -> (ArrayBuffer(Child("a"), Child("b")), ArrayBuffer(Pet("fifi"))),
"jill" -> (ArrayBuffer(), ArrayBuffer(Pet("bobo"), Pet("jack"), Pet("Roger rabbit")))
)
Just for the curious, here's how it could be done using Scalaz:
import scalaz._, Scalaz._
case class Child(name: String)
val peopleToChildren = Map(
"max" -> List(Child("a"), Child("b")),
"yaneeve" -> List(Child("y"), Child("d"))
)
case class Pet(name: String)
val peopleToPets = Map(
"max" -> List(Pet("fifi")),
"jill" -> List(Pet("bobo"), Pet("jack"), Pet("Roger rabbit"))
)
val peopleToChildrenAndPets: Map[String, (List[Child], List[Pet])] =
peopleToChildren.strengthR(nil[Pet]) |+| peopleToPets.strengthL(nil[Child])
Explanation:
nil[Pet]
is just an alias for List.empty[Pet]
strengthR
for a given Functor
tuples contained values, so that its parameter is at the right. Here it is equivalent to peopleToChildren.mapValues(v => (v, nil[Pet]))
strengthL
is the same, but element will be added to the left|+|
is an append operator for a given Semigroup
. The one here is derived recursively:
Map[K, V]
, it uses |+|
to combine values of type V
if a given key exists in both Maps. If the value is only present in one of them, it will be retained as is. Here, V = (List[Child], List[Pet])
(A, B)
, it again uses |+|
to combine both A
s and B
s. Here, A = List[Child]
and B = List[Pet]
List
s - for generic Seq
s this operation is not definedResult:
peopleToChildrenAndPets: Map[String, (List[Child], List[Pet])] = Map(
"max" -> (List(Child("a"), Child("b")), List(Pet("fifi"))),
"jill" -> (
List(),
List(Pet("bobo"), Pet("jack"), Pet("Roger rabbit"))
),
"yaneeve" -> (List(Child("y"), Child("d")), List())
)