I have two dataframes that look like this:
df_1 = pd.DataFrame({
\'A\' : [1.0, 2.0, 3.0, 4.0],
\'B\' : [100, 200, 300, 400],
\'C\' : [2, 3, 4, 5]
Pandas index object have set-like properties, so you can directly do:
df_2.columns.difference(df_1.columns)
Index([u'D'], dtype='object')
You can also use operators like &|^
to compute intersection, union and symmetric difference:
df_1.columns & df_2.columns
Index([u'B', u'C'], dtype='object')
df_1.columns | df_2.columns
Index([u'A', u'B', u'C', u'D'], dtype='object')
df_1.columns ^ df_2.columns
Index([u'A', u'D'], dtype='object')
There use to be the -
operator for difference, now deprecated:
df_2.columns - df_1.columns
FutureWarning: using '-' to provide set differences with Indexes is deprecated, use .difference()
Index([u'D'], dtype='object')
Numpy solution with numpy.setdiff1d:
a = np.setdiff1d(df_2.columns, df_1.columns)
print (a)
['D']
Pandas solution with Index.difference:
a = df_2.columns.difference(df_1.columns)
print (a)
Index(['D'], dtype='object')
Another pandas methods are intersection, union and symmetric_difference :
print (df_2.columns.intersection(df_1.columns))
Index(['B', 'C'], dtype='object')
print (df_2.columns.union(df_1.columns))
Index(['A', 'B', 'C', 'D'], dtype='object')
print (df_2.columns.symmetric_difference(df_1.columns))
Index(['A', 'D'], dtype='object')
And numpy functions are intersect1d, union1d and setxor1d:
print (np.intersect1d(df_2.columns, df_1.columns))
['B' 'C']
print (np.union1d(df_2.columns, df_1.columns))
['A' 'B' 'C' 'D']
print (np.setxor1d(df_2.columns, df_1.columns))
['A' 'D']
You can use:
set(df_2.columns.values) - set(df_1.columns.values)
which returns a set containing column labels of columns in df_2
but not in df_1
.
here it is buddy
set(df_2.columns).difference(df_1.columns)
Out[76]: {'D'}