Cumulative sum by group in sqldf?

前端 未结 3 808
余生分开走
余生分开走 2020-12-19 23:51

I have a data frame with 3 variables: place, time, and value (P, T, X). I want to create a fourth variable which will be the cumulative sum of X. Normally I like to do group

相关标签:
3条回答
  • 2020-12-20 00:19

    Set up some test data:

    DF <- data.frame(t = 1:4, p = rep(1:3, each = 4), value = 1:12)
    

    and now we have three solutions. First we use sqldf, as requested, using the default SQLite database. Next we do it with sqldf again but this time with PostgreSQL using RPostgreSQL or RpgSQL driver. PostgreSQL supports analytical windowing functions which simplify the SQL. You will need to set up a PostgreSQL database first to do that one. Finally we show a pure R solution which only uses the core of R.

    1) sqldf/RSQLite

    library(sqldf)
    
    sqldf("select a.*, sum(b.value) as cumsum 
        from DF a join DF b 
        using (p)
        where a.t >= b.t
        group by p, a.t"
    )
    

    2) sqldf/RPostgreSQL

    library(RPostgreSQL)
    library(sqldf)
    
    sqldf('select *,
        sum(value) over (partition by p order by t) as cumsum 
        from "DF"'
    )
    

    (This also works with the RpgSQL PostgreSQL driver. To use that you must have Java installed and a PostgreSQL database set up and then in place of the above use: 1ibrary(RpgSQL); sqldf(...) where the same SQL string is used except there should be no quotes around DF.)

    3) Plain R

    transform(DF, cumsum = ave(value, p, FUN = cumsum))
    
    0 讨论(0)
  • 2020-12-20 00:21

    Or, another option is data.table.

    > library(data.table)
    > DT = data.table(place = 1:4, time = rep(1:3, each = 4), value = 1:3)
    > setkey(DT,place,time)   # order by place and time
    > DT
          place time value
     [1,]     1    1     1
     [2,]     1    2     2
     [3,]     1    3     3
     [4,]     2    1     2
     [5,]     2    2     3
     [6,]     2    3     1
     [7,]     3    1     3
     [8,]     3    2     1
     [9,]     3    3     2
    [10,]     4    1     1
    [11,]     4    2     2
    [12,]     4    3     3
    > DT[,list(time,value,cumsum(value)),by=place]
          place time value V3
     [1,]     1    1     1  1
     [2,]     1    2     2  3
     [3,]     1    3     3  6
     [4,]     2    1     2  2
     [5,]     2    2     3  5
     [6,]     2    3     1  6
     [7,]     3    1     3  3
     [8,]     3    2     1  4
     [9,]     3    3     2  6
    [10,]     4    1     1  1
    [11,]     4    2     2  3
    [12,]     4    3     3  6
    > 
    
    0 讨论(0)
  • 2020-12-20 00:24

    I hope i understood what you want:

    library(plyr)
    ddply(df, .(P,T), summarize, cumsum(X))
    

    does this help you?

    0 讨论(0)
提交回复
热议问题