I love currying but there are a couple of reasons why a lof of Javascript devs reject this technique:
The current prevailing approach provides that each multi argument function is wrapped in a dynamic curry function. While this helps with concern #1, it leaves the remaining ones untouched. Here is an alternative approach.
A composable function is curried only in its last argument. To distinguish them from normal multi argument functions, I name them with a trailing underscore (naming is hard).
const comp_ = (f, g) => x => f(g(x)); // composable function
const foldl_ = (f, acc) => xs => xs.reduce((acc, x, i) => f(acc, x, i), acc);
const curry = f => y => x => f(x, y); // fully curried function
const drop = (xs, n) => xs.slice(n); // normal, multi argument function
const add = (x, y) => x + y;
const sum = foldl_(add, 0);
const dropAndSum = comp_(sum, curry(drop) (1));
console.log(
dropAndSum([1,2,3,4]) // 9
);
With the exception of drop
, dropAndSum
consists exclusively of multi argument or composable functions and yet we've achieved the same expressiveness as with fully curried functions - at least with this example.
You can see that each composable function expects either uncurried or other composable functions as arguments. This will increase speed especially for iterative function applications. However, this is also restrictive as soon as the result of a composable function is a function again. Look into the countWhere
example below for more information.
Instead of defining composable functions manually we can easily implement a programmatic solution:
// generic functions
const composable = f => (...args) => x => f(...args, x);
const foldr = (f, acc, xs) =>
xs.reduceRight((acc, x, i) => f(x, acc, i), acc);
const comp_ = (f, g) => x => f(g(x));
const I = x => x;
const inc = x => x + 1;
// derived functions
const foldr_ = composable(foldr);
const compn_ = foldr_(comp_, I);
const inc3 = compn_([inc, inc, inc]);
// and run...
console.log(
inc3(0) // 3
);
Maybe you noticed that curry
(form the first example) swaps arguments, while composable
does not. curry
is meant to be applied to operator functions like drop
or sub
only, which have a different argument order in curried and uncurried form respectively. An operator function is any function that expects only non-functional arguments. In this sence...
const I = x => x;
const eq = (x, y) => x === y; // are operator functions
// whereas
const A = (f, x) => f(x);
const U = f => f(f); // are not operator but a higher order functions
Higher order functions (HOFs) don't need swapped arguments but you will regularly encounter them with arities higher than two, hence the composbale
function is useful.
HOFs are one of the most awesome tools in functional programming. They abstract from function application. This is the reason why we use them all the time.
We can solve more complex tasks as well:
// generic functions
const composable = f => (...args) => x => f(...args, x);
const filter = (f, xs) => xs.filter(f);
const comp2 = (f, g, x, y) => f(g(x, y));
const len = xs => xs.length;
const odd = x => x % 2 === 1;
// compositions
const countWhere_ = f => composable(comp2) (len, filter, f); // (A)
const countWhereOdd = countWhere_(odd);
// and run...
console.log(
countWhereOdd([1,2,3,4,5]) // 3
);
Please note that in line A
we were forced to pass f
explicitly. This is one of the drawbacks of composable against curried functions: Sometimes we need to pass the data explicitly. However, if you dislike point-free style, this is actually an advantage.
Making functions composable mitigates the following concerns:
f(x) (y) (z)
However, point #4 (readability) is only slightly improved (less point-free style) and point #3 (debugging) not at all.
While I am convinced that a fully curried approach is superior to the one presented here, I think composable higher order functions are worth thinking about. Just use them as long as you or your coworkers don't feel comfortable with proper currying.
Note: @ftor answered his/her own question. This is a direct companion to that answer.
You're already a genius
I think you might've re-imagined the partial
function – at least, in part!
const partial = (f, ...xs) => (...ys) => f(...xs, ...ys);
and it's counter-part, partialRight
const partialRight = (f, ...xs) => (...ys) => f(...ys, ...xs);
partial
takes a function, some args (xs
), and always returns a function that takes some more args (ys
), then applies f
to (...xs, ...ys)
Initial remarks
The context of this question is set in how currying and composition can play nice with a large user base of coders. My remarks will be in the same context
just because a function may return a function does not mean that it is curried – tacking on a _
to signify that a function is waiting for more args is confusing. Recall that currying (or partial function application) abstracts arity, so we never know when a function call will result in the value of a computation or another function waiting to be called.
curry
should not flip arguments; that is going to cause some serious wtf moments for your fellow coder
if we're going to create a wrapper for reduce
, the reduceRight
wrapper should be consistent – eg, your foldl
uses f(acc, x, i)
but your foldr
uses f(x, acc, i)
– this will cause a lot of pain amongst coworkers that aren't familiar with these choices
For the next section, I'm going to replace your composable
with partial
, remove _
-suffixes, and fix the foldr
wrapper
Composable functions
const partial = (f, ...xs) => (...ys) => f(...xs, ...ys);
const partialRight = (f, ...xs) => (...ys) => f(...ys, ...xs);
const comp = (f, g) => x => f(g(x));
const foldl = (f, acc, xs) => xs.reduce(f, acc);
const drop = (xs, n) => xs.slice(n);
const add = (x, y) => x + y;
const sum = partial(foldl, add, 0);
const dropAndSum = comp(sum, partialRight(drop, 1));
console.log(
dropAndSum([1,2,3,4]) // 9
);
Programmatic solution
const partial = (f, ...xs) => (...ys) => f(...xs, ...ys);
// restore consistent interface
const foldr = (f, acc, xs) => xs.reduceRight(f, acc);
const comp = (f,g) => x => f(g(x));
// added this for later
const flip = f => (x,y) => f(y,x);
const I = x => x;
const inc = x => x + 1;
const compn = partial(foldr, flip(comp), I);
const inc3 = compn([inc, inc, inc]);
console.log(
inc3(0) // 3
);
A more serious task
const partial = (f, ...xs) => (...ys) => f(...xs, ...ys);
const filter = (f, xs) => xs.filter(f);
const comp2 = (f, g, x, y) => f(g(x, y));
const len = xs => xs.length;
const odd = x => x % 2 === 1;
const countWhere = f => partial(comp2, len, filter, f);
const countWhereOdd = countWhere(odd);
console.log(
countWhereOdd([1,2,3,4,5]) // 3
);
Partial power !
partial
can actually be applied as many times as needed
const partial = (f, ...xs) => (...ys) => f(...xs, ...ys)
const p = (a,b,c,d,e,f) => a + b + c + d + e + f
let f = partial(p,1,2)
let g = partial(f,3,4)
let h = partial(g,5,6)
console.log(p(1,2,3,4,5,6)) // 21
console.log(f(3,4,5,6)) // 21
console.log(g(5,6)) // 21
console.log(h()) // 21
This makes it an indispensable tool for working with variadic functions, too
const partial = (f, ...xs) => (...ys) => f(...xs, ...ys)
const add = (x,y) => x + y
const p = (...xs) => xs.reduce(add, 0)
let f = partial(p,1,1,1,1)
let g = partial(f,2,2,2,2)
let h = partial(g,3,3,3,3)
console.log(h(4,4,4,4))
// 1 + 1 + 1 + 1 +
// 2 + 2 + 2 + 2 +
// 3 + 3 + 3 + 3 +
// 4 + 4 + 4 + 4 => 40
Lastly, a demonstration of partialRight
const partial = (f, ...xs) => (...ys) => f(...xs, ...ys);
const partialRight = (f, ...xs) => (...ys) => f(...ys, ...xs);
const p = (...xs) => console.log(...xs)
const f = partialRight(p, 7, 8, 9);
const g = partial(f, 1, 2, 3);
const h = partial(g, 4, 5, 6);
p(1, 2, 3, 4, 5, 6, 7, 8, 9) // 1 2 3 4 5 6 7 8 9
f(1, 2, 3, 4, 5, 6) // 1 2 3 4 5 6 7 8 9
g(4, 5, 6) // 1 2 3 4 5 6 7 8 9
h() // 1 2 3 4 5 6 7 8 9
Summary
OK, so partial
is pretty much a drop in replacement for composable
but also tackles some additional corner cases. Let's see how this bangs up against your initial list
f (x) (y) (z)
partial
creates new functionspartial
is flexible enough to remove points in many casesI agree with you that there's no replacement for fully curried functions. I personally found it easy to adopt the new style once I stopped being judgmental about the "ugliness" of the syntax – it's just different and people don't like different.