One whole day I have tried a lot to get all the related matches (with matchtemplate function) in sub-Image , which is ROI i have already extracted from the original image w
My code below is a modification of the original tutorial provided by OpenCV.
It loads an image from the command-line and displays it on the screen so the user can draw a rectangle somewhere to select the sub-image to be the template. After that operation is done, the sub-image will be inside a green rectangle:
Press any key to let the program perform the template matching. A new window titled "Template Match:" appears displaying the original image plus a blue rectangle that shows the matched area:
#include <cv.h>
#include <highgui.h>
#include <iostream>
const char* ref_window = "Draw rectangle to select template";
std::vector<cv::Point> rect_points;
void mouse_callback(int event, int x, int y, int flags, void* param)
{
if (!param)
return;
cv::Mat* ref_img = (cv::Mat*) param;
// Upon LMB click, store the X,Y coordinates to define a rectangle.
// Later this info is used to set a ROI in the reference image.
switch (event)
{
case CV_EVENT_LBUTTONDOWN:
{
if (rect_points.size() == 0)
rect_points.push_back(cv::Point(x, y));
}
break;
case CV_EVENT_LBUTTONUP:
{
if (rect_points.size() == 1)
rect_points.push_back(cv::Point(x, y));
}
break;
default:
break;
}
if (rect_points.size() == 2)
{
cv::rectangle(*ref_img,
rect_points[0],
rect_points[1],
cv::Scalar(0, 255, 0),
2);
cv::imshow(ref_window, *ref_img);
}
}
int main(int argc, char* argv[])
{
if (argc < 2)
{
std::cout << "Usage: " << argv[0] << " <image>" << std::endl;
return -1;
}
cv::Mat source = cv::imread(argv[1]); // original image
if (source.empty())
{
std::cout << "!!! Failed to load source image." << std::endl;
return -1;
}
// For testing purposes, our template image will be a copy of the original.
// Later we will present it in a window to the user, and he will select a region
// as a template, and then we'll try to match that to the original image.
cv::Mat reference = source.clone();
cv::namedWindow(ref_window, CV_WINDOW_AUTOSIZE);
cv::setMouseCallback(ref_window, mouse_callback, (void*)&reference);
cv::imshow(ref_window, reference);
cv::waitKey(0);
if (rect_points.size() != 2)
{
std::cout << "!!! Oops! You forgot to draw a rectangle." << std::endl;
return -1;
}
// Create a cv::Rect with the dimensions of the selected area in the image
cv::Rect template_roi = cv::boundingRect(rect_points);
// Create THE TEMPLATE image using the ROI from the rectangle
cv::Mat template_img = cv::Mat(source, template_roi);
// Create the result matrix
int result_cols = source.cols - template_img.cols + 1;
int result_rows = source.rows - template_img.rows + 1;
cv::Mat result;
// Do the matching and normalize
cv::matchTemplate(source, template_img, result, CV_TM_CCORR_NORMED);
cv::normalize(result, result, 0, 1, cv::NORM_MINMAX, -1, cv::Mat());
/// Localizing the best match with minMaxLoc
double min_val = 0, max_val = 0;
cv::Point min_loc, max_loc, match_loc;
int match_method = CV_TM_CCORR_NORMED;
cv::minMaxLoc(result, &min_val, &max_val, &min_loc, &max_loc, cv::Mat());
// When using CV_TM_CCORR_NORMED, max_loc holds the point with maximum
// correlation.
match_loc = max_loc;
// Draw a rectangle in the area that was matched
cv:rectangle(source,
match_loc,
cv::Point(match_loc.x + template_img.cols , match_loc.y + template_img.rows),
cv::Scalar(255, 0, 0), 2, 8, 0 );
imshow("Template Match:", source);
cv::waitKey(0);
return 0;
}