How can I perform Template Matching process in SUB-IMAGE extracted from ORIGINAL-IMAGE and Display the results in Original Image

后端 未结 1 1594
北海茫月
北海茫月 2020-12-19 13:11

One whole day I have tried a lot to get all the related matches (with matchtemplate function) in sub-Image , which is ROI i have already extracted from the original image w

相关标签:
1条回答
  • 2020-12-19 14:14

    My code below is a modification of the original tutorial provided by OpenCV.

    It loads an image from the command-line and displays it on the screen so the user can draw a rectangle somewhere to select the sub-image to be the template. After that operation is done, the sub-image will be inside a green rectangle:

    Press any key to let the program perform the template matching. A new window titled "Template Match:" appears displaying the original image plus a blue rectangle that shows the matched area:

    #include <cv.h>
    #include <highgui.h>
    #include <iostream>
    
    
    const char* ref_window = "Draw rectangle to select template";
    std::vector<cv::Point> rect_points;
    
    
    void mouse_callback(int event, int x, int y, int flags, void* param)
    {
        if (!param)
            return;
    
        cv::Mat* ref_img = (cv::Mat*) param;
    
        // Upon LMB click, store the X,Y coordinates to define a rectangle.
        // Later this info is used to set a ROI in the reference image.
        switch (event)
        {
            case CV_EVENT_LBUTTONDOWN:
            {
                if (rect_points.size() == 0)
                    rect_points.push_back(cv::Point(x, y));
            }
            break;
    
            case CV_EVENT_LBUTTONUP:
            {
                if (rect_points.size() == 1)
                    rect_points.push_back(cv::Point(x, y));
            }
            break;
    
            default:
            break;
        }
    
        if (rect_points.size() == 2)
        {
            cv::rectangle(*ref_img, 
                          rect_points[0], 
                          rect_points[1], 
                          cv::Scalar(0, 255, 0),
                          2);
    
            cv::imshow(ref_window, *ref_img);
        }
    }
    
    int main(int argc, char* argv[])
    {
        if (argc < 2)
        {
            std::cout << "Usage: " << argv[0] << " <image>" << std::endl;
            return -1;
        }
    
        cv::Mat source = cv::imread(argv[1]);   // original image
        if (source.empty())
        {
            std::cout << "!!! Failed to load source image." << std::endl;
            return -1;
        }
    
        // For testing purposes, our template image will be a copy of the original.
        // Later we will present it in a window to the user, and he will select a region 
        // as a template, and then we'll try to match that to the original image.
    
        cv::Mat reference = source.clone(); 
    
        cv::namedWindow(ref_window, CV_WINDOW_AUTOSIZE);
        cv::setMouseCallback(ref_window, mouse_callback, (void*)&reference);
    
        cv::imshow(ref_window, reference);
        cv::waitKey(0);
    
        if (rect_points.size() != 2)
        {
            std::cout << "!!! Oops! You forgot to draw a rectangle." << std::endl;
            return -1;
        }
    
        // Create a cv::Rect with the dimensions of the selected area in the image
        cv::Rect template_roi = cv::boundingRect(rect_points);
    
        // Create THE TEMPLATE image using the ROI from the rectangle
        cv::Mat template_img = cv::Mat(source, template_roi);
    
        // Create the result matrix
        int result_cols =  source.cols - template_img.cols + 1;
        int result_rows = source.rows - template_img.rows + 1;
        cv::Mat result;
    
        // Do the matching and normalize
        cv::matchTemplate(source, template_img, result, CV_TM_CCORR_NORMED);
        cv::normalize(result, result, 0, 1, cv::NORM_MINMAX, -1, cv::Mat());
    
        /// Localizing the best match with minMaxLoc
        double min_val = 0, max_val = 0; 
        cv::Point min_loc, max_loc, match_loc;
        int match_method = CV_TM_CCORR_NORMED;
        cv::minMaxLoc(result, &min_val, &max_val, &min_loc, &max_loc, cv::Mat());
    
        // When using CV_TM_CCORR_NORMED, max_loc holds the point with maximum 
        // correlation.
        match_loc = max_loc; 
    
        // Draw a rectangle in the area that was matched
        cv:rectangle(source, 
                     match_loc, 
                     cv::Point(match_loc.x + template_img.cols , match_loc.y + template_img.rows), 
                     cv::Scalar(255, 0, 0), 2, 8, 0 );
    
        imshow("Template Match:", source);
        cv::waitKey(0);
    
        return 0;
    }
    
    0 讨论(0)
提交回复
热议问题