How to programmatically generate deploy.txt for caffe in python

前端 未结 1 933
谎友^
谎友^ 2020-12-19 09:09

I have written python code to programmatically generate a convolutional neural network (CNN) for training and validation .prototxt files in caffe. Below is my function:

相关标签:
1条回答
  • 2020-12-19 10:12

    Quite simply:

    from caffe import layers as L, params as P
    def custom_net(lmdb, batch_size):
        # define your own net!
        n = caffe.NetSpec()
    
        if lmdb is None: # "deploy" flavor
            # assuming your data is of shape 3x224x224
            n.data = L.Input(input_param={'shape':{'dim':[1,3,224,224]}})
        else:
            # keep this data layer for all networks
            n.data, n.label = L.Data(batch_size=batch_size, backend=P.Data.LMDB, source=lmdb,
                             ntop=2, transform_param=dict(scale=1. / 255))
        # the other layers common to all flavors: train/val/deploy...
        n.conv1 = L.Convolution(n.data, kernel_size=6,
                            num_output=48, weight_filler=dict(type='xavier'))
        n.pool1 = L.Pooling(n.conv1, kernel_size=2, stride=2, pool=P.Pooling.MAX)
    
        n.conv2 = L.Convolution(n.pool1, kernel_size=5,
                            num_output=48, weight_filler=dict(type='xavier'))
        n.pool2 = L.Pooling(n.conv2, kernel_size=2, stride=2, pool=P.Pooling.MAX)
    
        n.conv3 = L.Convolution(n.pool2, kernel_size=4,
                            num_output=48, weight_filler=dict(type='xavier'))
        n.pool3 = L.Pooling(n.conv3, kernel_size=2, stride=2, pool=P.Pooling.MAX)
    
        n.conv4 = L.Convolution(n.pool3, kernel_size=2,
                            num_output=48, weight_filler=dict(type='xavier'))
        n.pool4 = L.Pooling(n.conv4, kernel_size=2, stride=2, pool=P.Pooling.MAX)
    
        n.fc1 = L.InnerProduct(n.pool4, num_output=50,
                           weight_filler=dict(type='xavier'))
        # do you "drop" i deploy as well? up to you to decide...
        n.drop1 = L.Dropout(n.fc1, dropout_param=dict(dropout_ratio=0.5))
        n.score = L.InnerProduct(n.drop1, num_output=2,
                             weight_filler=dict(type='xavier'))
    
        if lmdb is None:
            n.prob = L.Softmax(n.score)
        else:
            # keep this loss layer for all networks apart from "Deploy"
            n.loss = L.SoftmaxWithLoss(n.score, n.label)
    
        return n.to_proto()
    

    Now call the function:

    with open('net_deploy.prototxt', 'w') as f:
        f.write(str(custom_net(None, None)))
    

    As you can see there are two modifications to the prototxt (conditioned on lmdb being None):
    The first, instead of "Data" layer, you have the declarative "Input" layer declaring only "data" and no "label".
    The second change is the output layer: instead of a loss layer, you have a prediction layer (see, e.g., this answer).

    0 讨论(0)
提交回复
热议问题