Well, for many calculations like "given input A return f(A)" you can "cache" calculation results (store them in array or map), which will make calculation faster with larger number of values, IF some of those values repeat.
But I don't think it qualifies as "negative complexity". In this case fastest performance will probably count as O(1), worst case performance will be O(N), and average performance will be somewhere inbetween.
This is somewhat applicable for sorting algorithms - some of them have O(N) best-case scenario complexity and O(N^2) worst case complexity, depending on the state of data to be sorted.
I think that to have negative complexity, algorithm should return result before it has been asked to calculate result. I.e. it should be connected to a time machine and should be able to deal with corresponding "grandfather paradox".