Numpy: Index 3D array with index of last axis stored in 2D array

前端 未结 4 536
北海茫月
北海茫月 2020-12-19 00:18

I have a ndarray of shape(z,y,x) containing values. I am trying to index this array with another ndarray of shape(y,x) th

相关标签:
4条回答
  • 2020-12-19 00:36

    With readability, np.choose definitely looks great.

    If performance is of essence, you can calculate the linear indices and then use np.take or use a flattened version with .ravel() and extract those specific elements from val_arr. The implementation would look something like this -

    def linidx_take(val_arr,z_indices):
    
        # Get number of columns and rows in values array
         _,nC,nR = val_arr.shape
    
         # Get linear indices and thus extract elements with np.take
        idx = nC*nR*z_indices + nR*np.arange(nR)[:,None] + np.arange(nC)
        return np.take(val_arr,idx) # Or val_arr.ravel()[idx]
    

    Runtime tests and verify results -

    Ogrid based solution from here is made into a generic version for these tests, like so :

    In [182]: def ogrid_based(val_arr,z_indices):
         ...:   v_shp = val_arr.shape
         ...:   y,x = np.ogrid[0:v_shp[1], 0:v_shp[2]]
         ...:   return val_arr[z_indices, y, x]
         ...: 
    

    Case #1: Smaller datasize

    In [183]: val_arr = np.random.rand(30,30,30)
         ...: z_indices = np.random.randint(0,30,(30,30))
         ...: 
    
    In [184]: np.allclose(z_indices.choose(val_arr),ogrid_based(val_arr,z_indices))
    Out[184]: True
    
    In [185]: np.allclose(z_indices.choose(val_arr),linidx_take(val_arr,z_indices))
    Out[185]: True
    
    In [187]: %timeit z_indices.choose(val_arr)
    1000 loops, best of 3: 230 µs per loop
    
    In [188]: %timeit ogrid_based(val_arr,z_indices)
    10000 loops, best of 3: 54.1 µs per loop
    
    In [189]: %timeit linidx_take(val_arr,z_indices)
    10000 loops, best of 3: 30.3 µs per loop
    

    Case #2: Bigger datasize

    In [191]: val_arr = np.random.rand(300,300,300)
         ...: z_indices = np.random.randint(0,300,(300,300))
         ...: 
    
    In [192]: z_indices.choose(val_arr) # Seems like there is some limitation here with bigger arrays.
    Traceback (most recent call last):
    
      File "<ipython-input-192-10c3bb600361>", line 1, in <module>
        z_indices.choose(val_arr)
    
    ValueError: Need between 2 and (32) array objects (inclusive).
    
    
    In [194]: np.allclose(linidx_take(val_arr,z_indices),ogrid_based(val_arr,z_indices))
    Out[194]: True
    
    In [195]: %timeit ogrid_based(val_arr,z_indices)
    100 loops, best of 3: 3.67 ms per loop
    
    In [196]: %timeit linidx_take(val_arr,z_indices)
    100 loops, best of 3: 2.04 ms per loop
    
    0 讨论(0)
  • 2020-12-19 00:51

    Inspired by this thread, using np.ogrid:

    y,x = np.ogrid[0:3, 0:3]
    print [z_indices, y, x]
    [array([[1, 0, 2],
            [0, 0, 1],
            [2, 0, 1]]),
     array([[0],
            [1],
            [2]]),
     array([[0, 1, 2]])]
    
    print val_arr[z_indices, y, x]
    [[ 9  1 20]
     [ 3  4 14]
     [24  7 17]]
    

    I have to admit that multidimensional fancy indexing can be messy and confusing :)

    0 讨论(0)
  • 2020-12-19 00:54

    If you have numpy >= 1.15.0 you could use numpy.take_along_axis. In your case:

    result_array = numpy.take_along_axis(val_arr, z_indices.reshape((3,3,1)), axis=2)
    

    That should give you the result you want in one neat line of code. Note the size of the indices array. It needs to have the same number of dimensions as your val_arr (and the same size in the first two dimensions).

    0 讨论(0)
  • 2020-12-19 01:00

    You can use choose to make the selection:

    >>> z_indices.choose(val_arr)
    array([[ 9,  1, 20],
           [ 3,  4, 14],
           [24,  7, 17]])
    

    The function choose is incredibly useful, but can be somewhat tricky to make sense of. Essentially, given an array (val_arr) we can make a series of choices (z_indices) from each n-dimensional slice along the first axis.

    Also: any fancy indexing operation will create a new array rather than a view of the original data. It is not possible to index val_arr with z_indices without creating a brand new array.

    0 讨论(0)
提交回复
热议问题