Use numpy.add.at
:
>>> import numpy as np
>>> A = np.array([1,2,3])
>>> B = np.array([10,20,30])
>>> I = np.array([0,1,1])
>>>
>>> np.add.at(A, I, B)
>>> A
array([11, 52, 3])
Alternatively, np.bincount
:
>>> A = np.array([1,2,3])
>>> B = np.array([10,20,30])
>>> I = np.array([0,1,1])
>>>
>>> A += np.bincount(I, B, minlength=A.size).astype(int)
>>> A
array([11, 52, 3])
Which is faster?
Depends. In this concrete example add.at
seems marginally faster, presumably because we need to convert types in the bincount
solution.
If OTOH A
and B
were float
dtype then bincount
would be faster.