How to compute the hash code for a stream in the same way as List.hashCode()

后端 未结 4 911
一整个雨季
一整个雨季 2020-12-17 21:27

I just realized that implementing the following algorithm to compute the hash code for a stream is not possible using Stream.reduce(...). The problem is that the initial see

相关标签:
4条回答
  • 2020-12-17 21:35

    The easiest and shortest way I found was to implement a Collector using Collectors.reducing:

    /**
     * Creates a new Collector that collects the hash code of the elements.
     * @param <T> the type of the input elements
     * @return the hash code
     * @see Arrays#hashCode(java.lang.Object[])
     * @see AbstractList#hashCode()
     */
    public static <T> Collector<T, ?, Integer> toHashCode() {
        return Collectors.reducing(1, Objects::hashCode, (i, j) -> 31 *  i + j);
    }
    
    @Test
    public void testHashCode() {
        List<?> list = Arrays.asList(Math.PI, 42, "stackoverflow.com");
        int expected = list.hashCode();
        int actual = list.stream().collect(StreamUtils.toHashCode());
        assertEquals(expected, actual);
    }
    
    0 讨论(0)
  • 2020-12-17 21:37

    Holger wrote the right solution, if you want a simple way of doing it there are two additional possibilities:

    1. collect to List and call hashCode()

    Stream<? extends Object> stream;
    int hashCode = stream.collect(toList()).hashCode();
    

    2. use Stream.iterator()

    Stream<? extends Object> stream;
    Iterator<? extends Object> iter = stream.iterator();
    int hashCode = 1;
    while(iter.hasNext()) {
      hashCode = 31 *hashCode + Objects.hashCode(iter.next());
    }
    

    Just as a reminder the algorithm that List.hashCode() uses:

    int hashCode = 1;
    for (E e : list)
      hashCode = 31*hashCode + (e==null ? 0 : e.hashCode());
    
    0 讨论(0)
  • 2020-12-17 21:48

    While, at the first glance, the hash code algorithm seems to be non-parallelizable due to its non-associativity, it is possible, if we transform the function:

    ((a * 31 + b) * 31 + c ) * 31 + d
    

    to

    a * 31 * 31 * 31 + b * 31 * 31 + c * 31 + d
    

    which basically is

    a * 31³ + b * 31² + c * 31¹ + d * 31⁰
    

    or for an arbitrary List of size n:

    1 * 31ⁿ + e₀ * 31ⁿ⁻¹ + e₁ * 31ⁿ⁻² + e₂ * 31ⁿ⁻³ +  …  + eₙ₋₃ * 31² + eₙ₋₂ * 31¹ + eₙ₋₁ * 31⁰
    

    with the first 1 being the initial value of the original algorithm and eₓ being the hash code of the list element at index x. While the summands are evaluation order independent now, there’s obviously a dependency to the element’s position, which we can solve by streaming over the indices in the first place, which works for random access lists and arrays, or solve generally, with a collector which tracks the number of encountered objects. The collector can resort to the repeated multiplications for the accumulation and has to resort to the power function only for combining results:

    static <T> Collector<T,?,Integer> hashing() {
        return Collector.of(() -> new int[2],
            (a,o)    -> { a[0]=a[0]*31+Objects.hashCode(o); a[1]++; },
            (a1, a2) -> { a1[0]=a1[0]*iPow(31,a2[1])+a2[0]; a1[1]+=a2[1]; return a1; },
            a -> iPow(31,a[1])+a[0]);
    }
    // derived from http://stackoverflow.com/questions/101439
    private static int iPow(int base, int exp) {
        int result = 1;
        for(; exp>0; exp >>= 1, base *= base)
            if((exp & 1)!=0) result *= base;
        return result;
    }
    

     

    List<Object> list = Arrays.asList(1,null, new Object(),4,5,6);
    int expected = list.hashCode();
    
    int hashCode = list.stream().collect(hashing());
    if(hashCode != expected)
        throw new AssertionError();
    
    // works in parallel
    hashCode = list.parallelStream().collect(hashing());
    if(hashCode != expected)
        throw new AssertionError();
    
    // a method avoiding auto-boxing is more complicated:
    int[] result=list.parallelStream().mapToInt(Objects::hashCode)
        .collect(() -> new int[2],
        (a,o)    -> { a[0]=a[0]*31+Objects.hashCode(o); a[1]++; },
        (a1, a2) -> { a1[0]=a1[0]*iPow(31,a2[1])+a2[0]; a1[1]+=a2[1]; });
    hashCode = iPow(31,result[1])+result[0];
    
    if(hashCode != expected)
        throw new AssertionError();
    
    // random access lists allow a better solution:
    hashCode = IntStream.range(0, list.size()).parallel()
        .map(ix -> Objects.hashCode(list.get(ix))*iPow(31, list.size()-ix-1))
        .sum() + iPow(31, list.size());
    
    if(hashCode != expected)
        throw new AssertionError();
    
    0 讨论(0)
  • 2020-12-17 21:51

    As a first approach I would use the collect-to-a-list solution as long as you don't have performance concerns. That way you avoid reimplementing the wheel and if one day the hash algorithm changes you benefit from that and you are also safe if the stream is parallelized (even if I'm not sure that's a real concern).

    The way I would implement it can vary depending on how and when you need to compare your different datastructures (let's call it Foo).

    If you do it manually and sparsly a simple static function may be enough:

    public static int computeHash(Foo origin, Collection<Function<Foo, ?>> selectors) {
        return selectors.stream()
                .map(f -> f.apply(origin))
                .collect(Collectors.toList())
                .hashCode();
    }
    

    And use it like this

    if(computeHash(foo1, selectors) == computeHash(foo2, selectors)) { ... }
    

    However, if instances of Foo are themselves stored in Collection and you need both hashCode() and equals() (from Object) to be implemented, I would wrap it inside a FooEqualable:

    public final class FooEqualable {
        private final Foo origin;
        private final Collection<Function<Foo, ?>> selectors;
    
        public FooEqualable(Foo origin, Collection<Function<Foo, ?>> selectors) {
            this.origin = origin;
            this.selectors = selectors;
        }
    
        @Override
        public int hashCode() {
            return selectors.stream()
                    .map(f -> f.apply(origin))
                    .collect(Collectors.toList())
                    .hashCode();
        }
    
        @Override
        public boolean equals(Object obj) {
            if (obj instanceof FooEqualable) {
                FooEqualable that = (FooEqualable) obj;
    
                Object[] a1 = selectors.stream().map(f -> f.apply(this.origin)).toArray();
                Object[] a2 = selectors.stream().map(f -> f.apply(that.origin)).toArray();
    
                return Arrays.equals(a1, a2);
            }
            return false;
        }
    }
    

    I'm fully aware that this solution isn't optimized (performance-wise) if multiple calls to hashCode() and equals() are made but I tend not to optimize except if it becomes a concern.

    0 讨论(0)
提交回复
热议问题