I have a Pandas Dataframe that contains one column containing cells containing a dictionary of key:value pairs, like this:
{\"name\":\"Test Thorton\",\"compa
consider df
df = pd.DataFrame([
['a', 'b', 'c', 'd', dict(F='y', G='v')],
['a', 'b', 'c', 'd', dict(F='y', G='v')],
], columns=list('ABCDE'))
df
A B C D E
0 a b c d {'F': 'y', 'G': 'v'}
1 a b c d {'F': 'y', 'G': 'v'}
Option 1
Use pd.Series.apply
, assign new columns in place
df.E.apply(pd.Series)
F G
0 y v
1 y v
Assign it like this
df[['F', 'G']] = df.E.apply(pd.Series)
df.drop('E', axis=1)
A B C D F G
0 a b c d y v
1 a b c d y v
Option 2
Pipeline the whole thing using the pd.DataFrame.assign
method
df.drop('E', 1).assign(**pd.DataFrame(df.E.values.tolist()))
A B C D F G
0 a b c d y v
1 a b c d y v
I think you can use concat:
df = pd.DataFrame({1:['a','h'],2:['b','h'], 5:[{6:'y', 7:'v'},{6:'u', 7:'t'}] })
print (df)
1 2 5
0 a b {6: 'y', 7: 'v'}
1 h h {6: 'u', 7: 't'}
print (df.loc[:,5].values.tolist())
[{6: 'y', 7: 'v'}, {6: 'u', 7: 't'}]
df1 = pd.DataFrame(df.loc[:,5].values.tolist())
print (df1)
6 7
0 y v
1 u t
print (pd.concat([df, df1], axis=1))
1 2 5 6 7
0 a b {6: 'y', 7: 'v'} y v
1 h h {6: 'u', 7: 't'} u t
Timings (len(df)=2k
):
In [2]: %timeit (pd.concat([df, pd.DataFrame(df.loc[:,5].values.tolist())], axis=1))
100 loops, best of 3: 2.99 ms per loop
In [3]: %timeit (pir(df))
1 loop, best of 3: 625 ms per loop
df = pd.concat([df]*1000).reset_index(drop=True)
print (pd.concat([df, pd.DataFrame(df.loc[:,5].values.tolist())], axis=1))
def pir(df):
df[['F', 'G']] = df[5].apply(pd.Series)
df.drop(5, axis=1)
return df
print (pir(df))