Given the example:
inline string &GetLabel( ) {
return m_Label;
};
Where m_Label is a private class member variable.
You're are correct. It's a reference to the string member.
The implication will be that if a caller were to assign a value or otherwise modify the returned string that they would also be modifying the member variable. If this is not the intent you may want to return a copy by value to avoid breaking encapsulation.
One implication is that if the enclosing object is destructed, the reference becomes invalid:
Object* o = new Object;
string& label = o->GetLabel();
delete o;
// label becomes a dangling reference here.
Another implication is that a caller may modify the string. You can remedy that by returning a const reference.
It returns a reference to the private member.
There are many cases where this is desirable, but some care should be taken.
IMO it's generally not a good idea to return a copy of an internal object that is not an integral type, for overall performance reasons. Yes I know, premature optimization is not good, but this is not really optimization, it's just a good performance practice that allows the caller to determine the performance implications; if it wants a copy, it can just not declare the variable that it's assigning it to as a reference.
There are 2 general rules of thumb I use here:
1) If you don't want the caller to be able to modify the private object directly, declare the return value as a const reference:
inline const string& GetLabel() const{ return m_Label; }
2) A caller should never store the reference returned from a class method, it should only be used locally where the parent object is guaranteed to be in scope.
If for some reason you need callers to be able to store a reference to your internal objects, use smart pointers instead.
Returning a reference means that the calling code can modify the value of your member variable after you return. That's very dangerous, unless you intended for that to happen.
Better is a const
reference, or return by value (without the &
).
The ampersand isn't before the function name so much as it's after the return type. it returns a reference to a string
.
The implication of this is that a caller of this function could modify the value of m_label
through the reference. On the other hand, it avoids copying the string. You might want the reference and the function to be const
, like so:
inline const string& GetLabel() const
{
return m_Label;
}
Best of both worlds. You avoid the copy, but callers can't change your object.