Keras + Tensorflow: Prediction on multiple gpus

前端 未结 2 1056
谎友^
谎友^ 2020-12-17 16:39

I\'m using Keras with tensorflow as backend. I have one compiled/trained model.

My prediction loop is slow so I would like to find a way to parallelize the pre

相关标签:
2条回答
  • 2020-12-17 16:58

    You can use this function to parallelize a Keras model (credits to kuza55).
    https://github.com/kuza55/keras-extras/blob/master/utils/multi_gpu.py
    .

    from keras.layers import merge
    from keras.layers.core import Lambda
    from keras.models import Model
    
    import tensorflow as tf
    
    def make_parallel(model, gpu_count):
        def get_slice(data, idx, parts):
            shape = tf.shape(data)
            size = tf.concat([ shape[:1] // parts, shape[1:] ],axis=0)
            stride = tf.concat([ shape[:1] // parts, shape[1:]*0 ],axis=0)
            start = stride * idx
            return tf.slice(data, start, size)
    
        outputs_all = []
        for i in range(len(model.outputs)):
            outputs_all.append([])
    
        #Place a copy of the model on each GPU, each getting a slice of the batch
        for i in range(gpu_count):
            with tf.device('/gpu:%d' % i):
                with tf.name_scope('tower_%d' % i) as scope:
    
                    inputs = []
                    #Slice each input into a piece for processing on this GPU
                    for x in model.inputs:
                        input_shape = tuple(x.get_shape().as_list())[1:]
                        slice_n = Lambda(get_slice, output_shape=input_shape, arguments={'idx':i,'parts':gpu_count})(x)
                        inputs.append(slice_n)                
    
                    outputs = model(inputs)
    
                    if not isinstance(outputs, list):
                        outputs = [outputs]
    
                    #Save all the outputs for merging back together later
                    for l in range(len(outputs)):
                        outputs_all[l].append(outputs[l])
    
        # merge outputs on CPU
        with tf.device('/cpu:0'):
            merged = []
            for outputs in outputs_all:
                merged.append(merge(outputs, mode='concat', concat_axis=0))
    
            return Model(input=model.inputs, output=merged)
    
    0 讨论(0)
  • 2020-12-17 17:07

    I created one simple example to show how to run keras model across multiple gpus. Basically, multiple processes are created and each of process owns a gpu. To specify the gpu id in process, setting env variable CUDA_VISIBLE_DEVICES is a very straightforward way (os.environ["CUDA_VISIBLE_DEVICES"]). Hope this git repo can help you.

    https://github.com/yuanyuanli85/Keras-Multiple-Process-Prediction

    0 讨论(0)
提交回复
热议问题