I have a pandas dataframe. One of my columns should only be floats. When I try to convert that column to floats, I\'m alerted that there are strings in there. I\'d like to d
You can find the data type of a column from the dtype.kind
attribute. Something like df[col].dtype.kind
. See the numpy docs for more details. Transpose the dataframe to go from indices to columns.
One of my columns should only be floats. I'd like to delete all rows where values in this column are strings
You can convert your series to numeric via pd.to_numeric and then use pd.Series.notnull. Conversion to float
is required as a separate step to avoid your series reverting to object
dtype.
# Data from @EdChum
df = pd.DataFrame({'a': [0.1, 0.5, 'jasdh', 9.0]})
res = df[pd.to_numeric(df['a'], errors='coerce').notnull()]
res['a'] = res['a'].astype(float)
print(res)
a
0 0.1
1 0.5
3 9.0
Use convert_objects
with param convert_numeric=True
this will coerce any non numeric values to NaN
:
In [24]:
df = pd.DataFrame({'a': [0.1,0.5,'jasdh', 9.0]})
df
Out[24]:
a
0 0.1
1 0.5
2 jasdh
3 9
In [27]:
df.convert_objects(convert_numeric=True)
Out[27]:
a
0 0.1
1 0.5
2 NaN
3 9.0
In [29]:
You can then drop them:
df.convert_objects(convert_numeric=True).dropna()
Out[29]:
a
0 0.1
1 0.5
3 9.0
UPDATE
Since version 0.17.0
this method is now deprecated and you need to use to_numeric unfortunately this operates on a Series
rather than a whole df so the equivalent code is now:
df.apply(lambda x: pd.to_numeric(x, errors='coerce')).dropna()
Assume your data frame is df
and you wanted to ensure that all data in one of the column of your data frame is numeric in specific pandas dtype
, e.g float
:
df[df.columns[n]] = df[df.columns[n]].apply(pd.to_numeric, errors='coerce').fillna(0).astype(float).dropna()