I\'m trying to add_trace ad each loop, but I get only one plot with multiplies lines on over each other.
mean <- -0.0007200342
sd <- 0.3403711
N=10
T
Nasty, but works:
mean <- -0.0007200342
sd <- 0.3403711
N=10
T=1
Delta = T/N
W = c(0,cumsum( sqrt(Delta) * rnorm(N, mean=mean, sd=sd)))
t <- seq(0,T, length=N+1)
for(i in 1:5){
W <- c(0,cumsum( sqrt(Delta) * rnorm(N, mean=mean, sd=sd)))
assign(paste("W_",i,sep=""),W)
assign(paste("Name_", i, sep=""), paste("Name",i,sep=""))
if(i==1){
pString<-"p<-plot_ly(x = t, y = W_1, name='W1')"
} else {
pString<-paste(pString, " %>% add_trace(x=t, y =", eval(paste("W", i, sep="_")),", name=", eval(paste("Name", i, sep="_")), ")", sep="")
}
}
eval(parse(text=pString))
print(p)
It is described here : http://www.r-graph-gallery.com/129-use-a-loop-to-add-trace-with-plotly/
save your plot in a variable, and then do add_trace :
p <- plotly(...)
p<- add_trace(p, ...)
Use evaluate = TRUE
in add_trace
.
The plot_ly
and add_trace
functions have an evaluation = FALSE
option that you can change to TRUE
, which should fix the scope issues.
I'd do this like this:
mean <- -0.0007200342
sd <- 0.3403711
N=10
T=1
Delta = T/N
# a list with the trace Y values
Ws <- lapply(
1:15,
function(idx){
c(0,cumsum( sqrt(Delta) * rnorm(N, mean=mean, sd=sd)))
}
)
# this could be a list with the trace X values, but is just a seq
t <- seq(0,T, length=N+1)
# a list with plotly compliant formatted objects
formattedW <- lapply(
seq_along(Ws),
function(idx, datasetY, datasetX){
return(list( x = datasetX, y = datasetY[[idx]], type="scatter", mode = 'lines+markers'))
},
datasetX = t,
datasetY = Ws
)
# Reduce the list of plotly compliant objs, starting with the plot_ly() value and adding the `add_trace` at the following iterations
Reduce(
function(acc, curr){
do.call(add_trace,c(list(p=acc),curr))
},
formattedW,
init=plot_ly()
)