Hi I\'m trying to reshape a data frame in a certain way.
this is the data frame I have,
des1 des2 des3 interval1 interval2 interval3
value
This might be a shorter approach:
[72]:
df.columns = pd.MultiIndex.from_tuples(map(lambda x: (x[:-1], x), df.columns))
In [73]:
print pd.DataFrame({key:df[key].stack().values for key in set(df.columns.get_level_values(0))},
index = df['des'].stack().index.get_level_values(0))
des interval
value
aaa a ##1
aaa b ##2
aaa c ##3
bbb d ##4
bbb e ##5
bbb f ##6
ccc g ##7
ccc h ##8
ccc i ##9
Or preserve the 1,2,3 info:
[73]:
df.columns = pd.MultiIndex.from_tuples(map(lambda x: (x[:-1], x[-1]), df.columns))
Keys = set(df.columns.get_level_values(0))
df2 = pd.concat([df[key].stack() for key in Keys], axis=1)
df2.columns = Keys
print df2
des interval
value
aaa 1 a ##1
2 b ##2
3 c ##3
bbb 1 d ##4
2 e ##5
3 f ##6
ccc 1 g ##7
2 h ##8
3 i ##9
I think the solution provided by CT Zhu is very genius. But you also can reshape this step by step (maybe this is the common way).
d = {'des1' : ['', 'a', 'd', 'g'],
'des2' : ['', 'b', 'e', 'h'],
'des3' : ['', 'c', 'f', 'i'],
'interval1' : ['', '##1', '##4', '##7'],
'interval2' : ['', '##2', '##5', '##6'],
'interval3' : ['', '##3', '##6', '##9']}
df = pd.DataFrame(d, index=['value', 'aaa', 'bbb', 'ccc'],
columns=['des1', 'des2', 'des3', 'interval1', 'interval2', 'interval3'])
nd = {'des' : [''] + df.iloc[1, 0:3].tolist() + df.iloc[2, 0:3].tolist() + df.iloc[3, 0:3].tolist(),
'interval' : ['']+ df.iloc[1, 3:6].tolist() + df.iloc[2, 3:6].tolist() + df.iloc[3, 3:6].tolist()}
ndf = pd.DataFrame(nd, index=['value', 'aaa', 'aaa', 'aaa', 'bbb', 'bbb', 'bbb', 'ccc', 'ccc', 'ccc'], columns=['des', 'interval'])
This is just a .melt
, docs are here
In [33]: pd.melt(df.reset_index(),
id_vars=['values'],
value_vars=['interval1','interval2','interval3'])
Out[33]:
values variable value
0 aaa interval1 ##1
1 bbb interval1 ##4
2 ccc interval1 ##7
3 aaa interval2 ##2
4 bbb interval2 ##5
5 ccc interval2 ##8
6 aaa interval3 ##3
7 bbb interval3 ##6
8 ccc interval3 ##9