I am using scikit-learn\'s linearSVC classifier for text mining. I have the y value as a label 0/1 and the X value as the TfidfVectorizer of the text document.
I us
You can't.
However you can use sklearn.svm.SVC
with kernel='linear'
and probability=True
It may run longer, but you can get probabilities from this classifier by using predict_proba
method.
clf=sklearn.svm.SVC(kernel='linear',probability=True)
clf.fit(X,y)
clf.predict_proba(X_test)
If you insist on using the LinearSVC class, you can wrap it in a sklearn.calibration.CalibratedClassifierCV object and fit the calibrated classifier which will give you a probabilistic classifier.
from sklearn.svm import LinearSVC
from sklearn.calibration import CalibratedClassifierCV
from sklearn import datasets
#Load iris dataset
iris = datasets.load_iris()
X = iris.data[:, :2] # Using only two features
y = iris.target #3 classes: 0, 1, 2
linear_svc = LinearSVC() #The base estimator
# This is the calibrated classifier which can give probabilistic classifier
calibrated_svc = CalibratedClassifierCV(linear_svc,
method='sigmoid', #sigmoid will use Platt's scaling. Refer to documentation for other methods.
cv=3)
calibrated_svc.fit(X, y)
# predict
prediction_data = [[2.3, 5],
[4, 7]]
predicted_probs = calibrated_svc.predict_proba(prediction_data) #important to use predict_proba
print predicted_probs
Here is the output:
[[ 9.98626760e-01 1.27594869e-03 9.72912751e-05]
[ 9.99578199e-01 1.79053170e-05 4.03895759e-04]]
which shows probabilities for each class for each data point.