Given a df
in[0]df1
out[0]
DATE REVENUE COST POSITION
FACTOR
0 2017/01/01 1000 900 10
1 2017/01/01 900 700 9
2 2
Try using:
df1.reset_index(drop=True)
This resets the index to the default integer index and removes the original one.
If you want to assign this change to original dataframe
it is easier to use:
df1.reset_index(drop=True, inplace=True)
As it will edit the df1
dataframe without making a copy of it.
I hope this works :)
df.reset_index(inplace=True) # Resets the index, makes factor a column
df.drop("Factor",axis=1,inplace=True) # drop factor from axis 1 and make changes permanent by inplace=True
FACTOR
is the name of the index - you shouldn't worry about it - it doesn't affect your data:
In [78]: df
Out[78]:
DATE REVENUE COST POSITION
FACTOR
10 2017/01/01 1000 900 10
11 2017/01/01 900 700 9
12 2017/01/01 1100 800 7
In [79]: df.index.name
Out[79]: 'FACTOR'
If you want to rename it or to get rid of it (preserving the index values) you can use DataFrame.rename_axis() method:
In [80]: df = df.rename_axis(None)
In [81]: df
Out[81]:
DATE REVENUE COST POSITION
10 2017/01/01 1000 900 10
11 2017/01/01 900 700 9
12 2017/01/01 1100 800 7
In [82]: df.index.name is None
Out[82]: True