I\'m trying to learn F# by rewriting some C# algorithms I have into idiomatic F#.
One of the first functions I\'m trying to rewrite is a batchesOf where:
My method involves converting the list to an array and recursively chunking the array:
let batchesOf (sz:int) lt =
let arr = List.toArray lt
let rec bite curr =
if (curr + sz - 1 ) >= arr.Length then
[Array.toList arr.[ curr .. (arr.Length - 1)]]
else
let curr1 = curr + sz
(Array.toList (arr.[curr .. (curr + sz - 1)])) :: (bite curr1)
bite 0
batchesOf 5 [1 .. 17]
[[1; 2; 3; 4; 5]; [6; 7; 8; 9; 10]; [11; 12; 13; 14; 15]; [16; 17]]
Hurray, we can use List.chunkBySize
, Seq.chunkBySize
and Array.chunkBySize
in F# 4, as mentioned by Brad Collins and Scott Wlaschin.
Implementing this function using the seq<_>
type idiomatically is difficult - the type is inherently mutable, so there is no simple nice functional way. Your version is quite inefficient, because it uses Skip
repeatedly on the sequence. A better imperative option would be to use GetEnumerator
and just iterate over elements using IEnumerator
. You can find various imperative options in this snippet: http://fssnip.net/1o
If you're learning F#, then it is better to try writing the function using F# list type. This way, you can use idiomatic functional style. Then you can write batchesOf
using pattern matching with recursion and accumulator argument like this:
let batchesOf size input =
// Inner function that does the actual work.
// 'input' is the remaining part of the list, 'num' is the number of elements
// in a current batch, which is stored in 'batch'. Finally, 'acc' is a list of
// batches (in a reverse order)
let rec loop input num batch acc =
match input with
| [] ->
// We've reached the end - add current batch to the list of all
// batches if it is not empty and return batch (in the right order)
if batch <> [] then (List.rev batch)::acc else acc
|> List.rev
| x::xs when num = size - 1 ->
// We've reached the end of the batch - add the last element
// and add batch to the list of batches.
loop xs 0 [] ((List.rev (x::batch))::acc)
| x::xs ->
// Take one element from the input and add it to the current batch
loop xs (num + 1) (x::batch) acc
loop input 0 [] []
As a footnote, the imperative version can be made a bit nicer using computation expression for working with IEnumerator
, but that's not standard and it is quite advanced trick (for example, see http://fssnip.net/37).
This version passes all my tests I could think of including ones for lazy evaluation and single sequence evaluation:
let batchIn batchLength sequence =
let padding = seq { for i in 1 .. batchLength -> None }
let wrapped = sequence |> Seq.map Some
Seq.concat [wrapped; padding]
|> Seq.windowed batchLength
|> Seq.mapi (fun i el -> (i, el))
|> Seq.filter (fun t -> fst t % batchLength = 0)
|> Seq.map snd
|> Seq.map (Seq.choose id)
|> Seq.filter (fun el -> not (Seq.isEmpty el))
I am still quite new to F# so if I'm missing anything - please do correct me, it will be greatly appreciated.
A friend asked me this a while back. Here's a recycled answer. This works and is pure:
let batchesOf n =
Seq.mapi (fun i v -> i / n, v) >>
Seq.groupBy fst >>
Seq.map snd >>
Seq.map (Seq.map snd)
Or an impure version:
let batchesOf n =
let i = ref -1
Seq.groupBy (fun _ -> i := !i + 1; !i / n) >> Seq.map snd
These produce a seq<seq<'a>>
. If you really must have an 'a list list
as in your sample then just add ... |> Seq.map (List.ofSeq) |> List.ofSeq
as in:
> [1..17] |> batchesOf 5 |> Seq.map (List.ofSeq) |> List.ofSeq;;
val it : int list list = [[1; 2; 3; 4; 5]; [6; 7; 8; 9; 10]; [11; 12; 13; 14; 15]; [16; 17]]
Hope that helps!
This isn't perhaps idiomatic but it works:
let batchesOf n l =
let _, _, temp', res' = List.fold (fun (i, n, temp, res) hd ->
if i < n then
(i + 1, n, hd :: temp, res)
else
(1, i, [hd], (List.rev temp) :: res))
(0, n, [], []) l
(List.rev temp') :: res' |> List.rev