How can I transform blocks into a blockdiagonal matrix (NumPy)

后端 未结 3 734
攒了一身酷
攒了一身酷 2020-12-16 15:53

I have three same-size square matrices in NumPy. I would like to combine these to a block-diagonal matrix.

Example:

a1 = np.array([[1,1,1],[1,1,1],[1         


        
相关标签:
3条回答
  • 2020-12-16 16:12

    Since these answers, numpy has added a block function

    In [695]: A=np.arange(1,10).reshape(3,3)
    In [696]: B=np.arange(10,14).reshape(2,2)
    In [698]: C = np.zeros((3,2),int)
    
    In [699]: np.block([[A,C],[C.T,B]])
    Out[699]: 
    array([[ 1,  2,  3,  0,  0],
           [ 4,  5,  6,  0,  0],
           [ 7,  8,  9,  0,  0],
           [ 0,  0,  0, 10, 11],
           [ 0,  0,  0, 12, 13]])
    
    0 讨论(0)
  • 2020-12-16 16:17

    scipy.linalg has a block_diag function to do this automatically

    >>> a1 = np.array([[1,1,1],[1,1,1],[1,1,1]])
    >>> a2 = np.array([[2,2,2],[2,2,2],[2,2,2]])
    >>> a3 = np.array([[3,3,3],[3,3,3],[3,3,3]])
    >>> import scipy.linalg
    >>> scipy.linalg.block_diag(a1, a2, a3)
    array([[1, 1, 1, 0, 0, 0, 0, 0, 0],
           [1, 1, 1, 0, 0, 0, 0, 0, 0],
           [1, 1, 1, 0, 0, 0, 0, 0, 0],
           [0, 0, 0, 2, 2, 2, 0, 0, 0],
           [0, 0, 0, 2, 2, 2, 0, 0, 0],
           [0, 0, 0, 2, 2, 2, 0, 0, 0],
           [0, 0, 0, 0, 0, 0, 3, 3, 3],
           [0, 0, 0, 0, 0, 0, 3, 3, 3],
           [0, 0, 0, 0, 0, 0, 3, 3, 3]])
    >>> r = np.array([[1,1,1,0,0,0,0,0,0],[1,1,1,0,0,0,0,0,0],[1,1,1,0,0,0,0,0,0], [0,0,0,2,2,2,0,0,0],[0,0,0,2,2,2,0,0,0],[0,0,0,2,2,2,0,0,0],[0,0,0,0,0,0,3,3,3],[0,0,0,0,0,0,3,3,3],[0,0,0,0,0,0,3,3,3]])
    >>> (scipy.linalg.block_diag(a1, a2, a3)  == r).all()
    True
    
    0 讨论(0)
  • 2020-12-16 16:24

    If you want this particular array r, perhaps the easiest way would be:

    r=np.kron(np.diag([1,2,3]),np.ones((3,3),dtype='int'))
    

    If a1, a2, a3 can be arbitrary 2-dimensional arrays, then perhaps the easiest way is:

    a1=np.asmatrix(a1)
    a2=np.asmatrix(a2)
    a3=np.asmatrix(a3)
    z=np.asmatrix(np.zeros((3,3)))
    r=np.asarray(np.bmat('a1, z, z; z, a2, z; z, z, a3'))
    

    An alternative slower method is:

    r=(np.kron([[1,0,0],[0,0,0],[0,0,0]],a1)   
       +np.kron([[0,0,0],[0,1,0],[0,0,0]],a2)
       +np.kron([[0,0,0],[0,0,0],[0,0,1]],a3))
    
    0 讨论(0)
提交回复
热议问题