Calculating all possible sub-sequences of a given length (C#)

前端 未结 4 1394
悲&欢浪女
悲&欢浪女 2020-12-16 06:21

If I have a sequence as follows (let\'s say it\'s an IEnumerable):

[A, B, C, D, E]

Then what\'s the cleanest way to c

相关标签:
4条回答
  • 2020-12-16 07:07

    Something like:

    static void Main()
    {
        string[] data = { "A", "B", "C", "D", "E" };
        WalkSubSequences(data, 3);
    }
    
    public static void WalkSubSequences<T>(IEnumerable<T> data, int sequenceLength)
    {
        T[] selected = new T[sequenceLength];
        WalkSubSequences(data.ToArray(), selected, 0, sequenceLength);
    }
    private static void WalkSubSequences<T>(T[] data, T[] selected,
        int startIndex, int sequenceLength)
    {
        for (int i = startIndex; i + sequenceLength <= data.Length; i++)
        {
            selected[selected.Length - sequenceLength] = data[i];
            if (sequenceLength == 1)
            {
                ShowResult(selected);
            }
            else
            {
                WalkSubSequences(data, selected, i + 1, sequenceLength - 1);
            }
        }
    }
    
    private static void ShowResult<T>(T[] selected)
    {
        StringBuilder sb = new StringBuilder();
        sb.Append(selected[0]);
        for (int j = 1; j < selected.Length; j++)
        {
            sb.Append(';').Append(selected[j]);
        }
        Console.WriteLine(sb.ToString());
    }
    
    0 讨论(0)
  • 2020-12-16 07:07

    I would suggest a recursive algorithm for this. I'm sorry, but it has been a while since I did anything in C#, so I'll just give pseudo-code here.

    function allPossible(iterator, length, currSubSeq, allResults) {
        // Add the current sub sequence to the results if it is the correct length.
        if (currSubSeq.length == length) {
            copy = currSubSeq.copy();
            allResults.add(copy);
        }
        // If it is too long, return early.
        else if (currSubSeq.length > length) {
            return allResults;
        }
    
        // Get the next item from the iterator and handle both cases:
        // I.E. when it is, and when it isn't in a sub sequence.
        item = iterator.getNext();
        allPossible(iterator, currSubSeq, allResults);
        currSubSeq.add(item);
        allPossible(iterator, currSubSeq, allResults);
    
        return allResults;
    }
    

    Then you find all possible sub sequences by calling allPossible with an iterator that produces all elements in your original sequence, the length that you want your sub-sequences, an empty sequence of items for currSubSeq, and an empty sequence of item sequences for allResults. I'm assuming pass-by-reference semantics for all the parameters. Sorry that I couldn't give you the proper C# implementation, but I'm sure you know more than enough to take my algorithm sketch and turn it into code.

    One last thing. Because this algorithm is recursive, you may have a stack overflow if you run it on a very long sequence with a large length parameter since stack usage is O(2^N) where N = length. I don't think this is a big problem because the algorithm has O(2^N) run-time because of the nature of the problem, so you shouldn't try to run it with a large enough length to overflow the stack anyway!

    CAVEAT I haven't actually tested this pseudo-code, so there may be something subtle I haven't thought of.

    0 讨论(0)
  • 2020-12-16 07:15

    Here is a solution storing the state in a array of bools. It works by creating the following states on each Next() call (n = 5, k = 3).

    1 1 1 . .  Move last 1 right once.
    1 1 . 1 .  Move last 1 right once.
    1 1 . . 1  Move last 1 right once.
    1 . 1 1 .  Move the second last 1 right once and all 1s from the right back.
    1 . 1 . 1  Move last 1 right once.
    1 . . 1 1  Move the second last 1 right once (and all 1s from the right back.)
    . 1 1 1 .  Move the third last 1 right once and all 1s from the right back.
    . 1 1 . 1  Move last 1 right once.
    . 1 . 1 1  Move the second last 1 right once (and all 1s from the right back.)
    . . 1 1 1  Move the third last 1 right once (and all 1s from the right back.)
    

    This state can then be used to select the coresponding items from the supplied sequence for every state.

    At first the initialization.

    public static Boolean[] Initialize(Int32 n, Int32 k)
    {
        return Enumerable.Concat(Enumerable.Repeat(true, k),
                                 Enumerable.Repeat(false, n - k)).ToArray();
    }
    

    The code to move to the next combination (subsequence).

    public static Boolean Next(this Boolean[] list)
    {
        Int32 lastOneIndex = Array.LastIndexOf(list, true);
    
        if (lastOneIndex == -1)
        {
            return false; // All zeros. 0000000
        }
        else if (lastOneIndex < list.Length - 1)
        {
            // Move the last one right once. 1100X00 => 11000X0
            list.MoveBlock(lastOneIndex, lastOneIndex, lastOneIndex + 1);
        }
        else
        {
            Int32 lastZeroIndex = Array.LastIndexOf(list, false, lastOneIndex);
    
            if (lastZeroIndex == -1)
            {
                return false; // All ones. 1111111
            }
            else
            {
                Int32 blockEndIndex = Array.LastIndexOf(list, true, lastZeroIndex);
    
                if (blockEndIndex == -1)
                {
                    // Move all ones back to the very left. 0000XXX => XXX0000
                    list.MoveBlock(lastZeroIndex + 1, lastOneIndex, 0);
    
                    return false; // Back at initial position.
                }
                else
                {
                    // Move the block end right once. 11X0011 => 110X011
                    list.MoveBlock(blockEndIndex, blockEndIndex, blockEndIndex + 1);
                    // Move the block of ones from the very right back left. 11010XX => 1101XX0
                    list.MoveBlock(lastZeroIndex + 1, lastOneIndex, blockEndIndex + 2);
                }
            }
        }
    
        return true;
    }
    

    Finally some helper methods.

    public static void MoveBlock(this Boolean[] list, Int32 oldStart, Int32 oldEnd, Int32 newStart)
    {
        list.ClearBlock(oldStart, oldEnd);
        list.SetBlock(newStart, newStart + oldEnd - oldStart);
    }
    
    public static void SetBlock(this Boolean[] list, Int32 start, Int32 end)
    {
        list.SetBlockToValue(start, end, true);
    }
    
    public static void ClearBlock(this Boolean[] list, Int32 start, Int32 end)
    {
        list.SetBlockToValue(start, end, false);
    }
    
    public static void SetBlockToValue(this Boolean[] list, Int32 start, Int32 end, Boolean value)
    {
        for (int i = start; i <= end; i++)
        {
            list[i] = value;
        }
    }
    

    And a usage example using a string instead of a list.

    var sequence = "ABCDE";
    
    var state = Initialize(sequence.Count(), 5);
    
    do
    {
        Console.WriteLine(new String(sequence.Where((_, idx) => state[idx]).ToArray()));
    }
    while (state.Next());
    
    0 讨论(0)
  • 2020-12-16 07:25

    I've had success with IanG's PermuteUtils class:

    char[] items = new char[] { 'A', 'B', 'C', 'D', 'E' };
    
    foreach (IEnumerable<char> permutation in PermuteUtils.Permute(items, 3)) {
        Console.Write("[");
        foreach (char c in permutation) {
            Console.Write(" " + c);
        }
        Console.WriteLine(" ]");
    }
    

    Results in:

    [ A B C ]
    [ A B D ]
    [ A B E ]
    [ A C B ]
    [ A C D ]
    [ A C E ]
    [ A D B ]
    [ A D C ]
    [ A D E ]
    [ A E B ]
    [ A E C ]
    [ A E D ]
    [ B A C ]
    [ B A D ]
    [ B A E ]
    [ B C A ]
    [ B C D ]
    [ B C E ]
    [ B D A ]
    [ B D C ]
    ...
    
    0 讨论(0)
提交回复
热议问题