Can GGPLOT make 2D summaries of data?

前端 未结 2 1401
独厮守ぢ
独厮守ぢ 2020-12-16 02:36

I wish to plot mean (or other function) of reaction time as a function of the location of the target in the x y plane. As test data:

library(ggplot2)
xs <         


        
相关标签:
2条回答
  • 2020-12-16 03:16

    Update With the release of ggplot2 0.9.0, much of this functionality is covered by the new additions of stat_summary2d and stat_summary_bin.

    here is a gist for this answer: https://gist.github.com/1341218

    here is a slight modification of stat_bin2d so as to accept arbitrary function:

    StatAggr2d <- proto(Stat, {
      objname <- "aggr2d" 
      default_aes <- function(.) aes(fill = ..value..)
      required_aes <- c("x", "y", "z")
      default_geom <- function(.) GeomRect
    
      calculate <- function(., data, scales, binwidth = NULL, bins = 30, breaks = NULL, origin = NULL, drop = TRUE, fun = mean, ...) {
    
        range <- list(
          x = scales$x$output_set(),
          y = scales$y$output_set()
        )
    
        # Determine binwidth, if omitted
        if (is.null(binwidth)) {
          binwidth <- c(NA, NA)
          if (is.integer(data$x)) {
            binwidth[1] <- 1
          } else {
            binwidth[1] <- diff(range$x) / bins
          }
          if (is.integer(data$y)) {
            binwidth[2] <- 1
          } else {
            binwidth[2] <- diff(range$y) / bins
          }      
        }
        stopifnot(is.numeric(binwidth))
        stopifnot(length(binwidth) == 2)
    
        # Determine breaks, if omitted
        if (is.null(breaks)) {
          if (is.null(origin)) {
            breaks <- list(
              fullseq(range$x, binwidth[1]),
              fullseq(range$y, binwidth[2])
            )
          } else {
            breaks <- list(
              seq(origin[1], max(range$x) + binwidth[1], binwidth[1]),
              seq(origin[2], max(range$y) + binwidth[2], binwidth[2])
            )
          }
        }
        stopifnot(is.list(breaks))
        stopifnot(length(breaks) == 2)
        stopifnot(all(sapply(breaks, is.numeric)))
        names(breaks) <- c("x", "y")
    
        xbin <- cut(data$x, sort(breaks$x), include.lowest=TRUE)
        ybin <- cut(data$y, sort(breaks$y), include.lowest=TRUE)
    
        if (is.null(data$weight)) data$weight <- 1
        ans <- ddply(data.frame(data, xbin, ybin), .(xbin, ybin), function(d) data.frame(value = fun(d$z)))
    
        within(ans,{
          xint <- as.numeric(xbin)
          xmin <- breaks$x[xint]
          xmax <- breaks$x[xint + 1]
    
          yint <- as.numeric(ybin)
          ymin <- breaks$y[yint]
          ymax <- breaks$y[yint + 1]
        })
      }
    })
    
    stat_aggr2d <- StatAggr2d$build_accessor()
    

    and usage:

    ggplot(data = testDF,aes(x=x,y=y, z=rts))+stat_aggr2d(bins=3)
    ggplot(data = testDF,aes(x=x,y=y, z=rts))+
      stat_aggr2d(bins=3, fun = function(x) sum(x^2))
    

    enter image description here

    As well, here is a slight modification of stat_binhex:

    StatAggrhex <- proto(Stat, {
      objname <- "aggrhex"
    
      default_aes <- function(.) aes(fill = ..value..)
      required_aes <- c("x", "y", "z")
      default_geom <- function(.) GeomHex
    
      calculate <- function(., data, scales, binwidth = NULL, bins = 30, na.rm = FALSE, fun = mean, ...) {
        try_require("hexbin")
        data <- remove_missing(data, na.rm, c("x", "y"), name="stat_hexbin")
    
        if (is.null(binwidth)) {
          binwidth <- c( 
            diff(scales$x$input_set()) / bins,
            diff(scales$y$input_set() ) / bins
          )
        }
    
        try_require("hexbin")
    
        x <- data$x
        y <- data$y
    
        # Convert binwidths into bounds + nbins
        xbnds <- c(
          round_any(min(x), binwidth[1], floor) - 1e-6, 
          round_any(max(x), binwidth[1], ceiling) + 1e-6
        )
        xbins <- diff(xbnds) / binwidth[1]
    
        ybnds <- c(
          round_any(min(y), binwidth[1], floor) - 1e-6, 
          round_any(max(y), binwidth[2], ceiling) + 1e-6
        )
        ybins <- diff(ybnds) / binwidth[2]
    
        # Call hexbin
        hb <- hexbin(
          x, xbnds = xbnds, xbins = xbins,  
          y, ybnds = ybnds, shape = ybins / xbins,
          IDs = TRUE
        )
        value <- tapply(data$z, hb@cID, fun)
    
        # Convert to data frame
        data.frame(hcell2xy(hb), value)
      }
    
    
    })
    
    stat_aggrhex <- StatAggrhex$build_accessor()
    

    and usage:

    ggplot(data = testDF,aes(x=x,y=y, z=rts))+stat_aggrhex(bins=3)
    ggplot(data = testDF,aes(x=x,y=y, z=rts))+
      stat_aggrhex(bins=3, fun = function(x) sum(x^2))
    

    enter image description here

    0 讨论(0)
  • 2020-12-16 03:36

    This turned out to be harder than I expected.

    You can almost trick ggplot into doing this, by providing a weights aesthetic, but that only gives you the sum of the weights in the bin, not the mean (and you have to specify drop=FALSE to retain negative bin values). You can also retrieve either counts or density within a bin, but neither of those really solves the problem.

    Here's what I ended up with:

    ## breaks vector (slightly coarser than the 10x10 spec above;
    ##   even 64 bins is a lot for binning only 100 points)
    bvec <- seq(-1,1,by=0.25)  
    
    ## helper function
    tmpf <- function(x,y,z,FUN=mean,breaks) {
      midfun <- function(x) (head(x,-1)+tail(x,-1))/2
      mids <- list(x=midfun(breaks$x),y=midfun(breaks$y))
      tt <- tapply(z,list(cut(x,breaks$x),cut(y,breaks$y)),FUN)
      mt <- melt(tt)
      ## factor order gets scrambled (argh), reset it
      mt$X1  <- factor(mt$X1,levels=rownames(tt))
      mt$X2  <- factor(mt$X2,levels=colnames(tt))  
      transform(X,
                x=mids$x[mt$X1],
                y=mids$y[mt$X2])
    }
    
    ggplot(data=with(testDF,tmpf(x,y,rt,breaks=list(x=bvec,y=bvec))),
           aes(x=x,y=y,fill=value))+
      geom_tile()+
      scale_x_continuous(expand=c(0,0))+   ## expand to fill plot region
      scale_y_continuous(expand=c(0,0))
    

    This assumes equal bin widths, etc., could be extended ... it really is too bad that (as far as I can tell) stat_bin2d doesn't accept a user-specified function.

    0 讨论(0)
提交回复
热议问题