TL;DR : Is there a C++ implementation of RANSAC or other robust correspondence algorithms that is freely usable with arbitrary 2D point sets?
I know that many implem
I was looking for something like that and then I found this.
The code is in c++ at bottom part.
The function below was originaly extracted from this class.
cv::Mat ransacTest(const std::vector<cv::DMatch>& matches, const std::vector<cv::KeyPoint>& keypoints1,const std::vector<cv::KeyPoint>& keypoints2, std::vector<cv::DMatch>& outMatches) {
// Convert keypoints into Point2f
std::vector<cv::Point2f> points1, points2;
cv::Mat fundemental;
for (std::vector<cv::DMatch>::const_iterator it= matches.begin(); it!= matches.end(); ++it) {
// Get the position of left keypoints
float x= keypoints1[it->queryIdx].pt.x;
float y= keypoints1[it->queryIdx].pt.y;
points1.push_back(cv::Point2f(x,y));
// Get the position of right keypoints
x= keypoints2[it->trainIdx].pt.x;
y= keypoints2[it->trainIdx].pt.y;
points2.push_back(cv::Point2f(x,y));
}
// Compute F matrix using RANSAC
std::vector<uchar> inliers(points1.size(),0);
if ( points1.size() > 0 && points2.size() > 0 ){
cv::Mat fundemental= cv::findFundamentalMat(
cv::Mat(points1),cv::Mat(points2), // matching points
inliers, // match status (inlier or outlier)
CV_FM_RANSAC, // RANSAC method
3.0, // distance to epipolar line
0.99); // confidence probability
// extract the surviving (inliers) matches
std::vector<uchar>::const_iterator itIn= inliers.begin();
std::vector<cv::DMatch>::const_iterator itM= matches.begin();
// for all matches
for ( ;itIn!= inliers.end(); ++itIn, ++itM) {
if (*itIn) { // it is a valid match
outMatches.push_back(*itM);
}
}
// The F matrix will be recomputed with all accepted matches
// Convert keypoints into Point2f for final F computation
points1.clear();
points2.clear();
for (std::vector<cv::DMatch>::const_iterator it= outMatches.begin(); it!=outMatches.end(); ++it) {
// Get the position of left keypoints
float x= keypoints1[it->queryIdx].pt.x;
float y= keypoints1[it->queryIdx].pt.y;
points1.push_back(cv::Point2f(x,y));
// Get the position of right keypoints
x= keypoints2[it->trainIdx].pt.x;
y= keypoints2[it->trainIdx].pt.y;
points2.push_back(cv::Point2f(x,y));
}
// Compute 8-point F from all accepted matches
if( points1.size() > 0 && points2.size() > 0){
fundemental= cv::findFundamentalMat(
cv::Mat(points1),cv::Mat(points2), // matches
CV_FM_8POINT); // 8-point method
}
}
return fundemental;
}
It's surprisingly hard to find a popular, lightweight, generic C++ implementation of RANSAC. I just released my generic RANSAC implementation under the MIT license.
https://github.com/drsrinathsridhar/GRANSAC
GRANSAC is generic, templated, header-only, and multithreaded. The user has to implement a class that inherits the AbstractModel. RANSAC estimation can then be done for any kind of model (eg.: 2D lines, 3D planes).
I have tested this only for 2D line fitting but should work for other problems too. Would be happy to add more features (such as automatically choosing number of iterations, etc.)
A good-looking RANSAC, LMedS, MSAC, MLESAC C++ implementation for Windows and Linux is here: https://github.com/sunglok/rtl.
RTL: RANSAC Template Library RANSAC Template Library (RTL) is an open-source robust regression tool especially with RANSAC family. RTL aims to provide fast, accurate, and easy ways to estimate any model parameters with data contaminated with outliers (incorrect data). RTL includes recent RANSAC variants with their performance evaluation with several models with synthetic and real data. RTL is written in generic programming style (template in C++) for its further applications with user-defined models. RTL is distributed under Simplified BSD License.
The basic class is RANSAC:
template <class Model, class Datum, class Data>
class RANSAC;
Other classes are inherited from it:
template <class Model, class Datum, class Data>
class MLESAC : virtual public RANSAC<Model, Datum, Data>
...
The usage is simple (an example from README):
// Find the best model using RANSAC
LineEstimator estimator;
RTL::RANSAC<Line, Point, std::vector<Point> > ransac(&estimator);
Line model;
double loss = ransac.FindBest(model, data, data.size(), 2);
// Determine inliers using the best model if necessary
std::vector<int> inliers = ransac.FindInliers(model, data, data.size());
The paper: https://sites.google.com/site/sunglok/files/Choi09_bmvc.pdf?attredirects=0