Suppose I am working with numpy in Python and I have a two-dimensional array of arbitrary size. For convenience, let\'s say I have a 5 x 5 array. The specific numbers are n
You can also use roll, to roll the array and then take your slice:
b = np.roll(np.roll(a, 1, axis=0), 1, axis=1)[:3,:3]
gives
array([[24, 20, 21],
[ 4, 0, 1],
[ 9, 5, 6]])
This will work with numpy >= 1.7.
a = np.arange(25).reshape(5,5)
array([[ 0, 1, 2, 3, 4],
[ 5, 6, 7, 8, 9],
[10, 11, 12, 13, 14],
[15, 16, 17, 18, 19],
[20, 21, 22, 23, 24]])
The pad routine has a 'wrap' method...
b = np.pad(a, 1, mode='wrap')
array([[24, 20, 21, 22, 23, 24, 20],
[ 4, 0, 1, 2, 3, 4, 0],
[ 9, 5, 6, 7, 8, 9, 5],
[14, 10, 11, 12, 13, 14, 10],
[19, 15, 16, 17, 18, 19, 15],
[24, 20, 21, 22, 23, 24, 20],
[ 4, 0, 1, 2, 3, 4, 0]])
Depending on the situation you may have to add 1 to each term of any slice in order to account for the padding around b
.
After playing around with various methods for a while, I just came to a fairly simple solution that works using ndarray.take
. Using the example I provided in the question:
a.take(range(-1,2),mode='wrap', axis=0).take(range(-1,2),mode='wrap',axis=1)
Provides the desired output of
[[24 20 21]
[4 0 1]
[9 5 6]]
It turns out to be a lot simpler than I thought it would be. This solution also works if you reverse the two axes.
This is similar to the previous answers I've seen using take
, but I haven't seen anyone explain how it'd be used with a 2D array before, so I'm posting this in the hopes it helps someone with the same question in the future.
I had a similar challenge working with wrap-around indexing, only in my case I needed to set values in the original matrix. I've solved this by 'fancy indexing' and making use of meshgrid function:
A = arange(25).reshape((5,5)) # destinatoin matrix
print 'A:\n',A
k =-1* np.arange(9).reshape(3,3)# test kernel, all negative
print 'Kernel:\n', k
ix,iy = np.meshgrid(arange(3),arange(3)) # create x and y basis indices
pos = (0,-1) # insertion position
# create insertion indices
x = (ix+pos[0]) % A.shape[0]
y = (iy+pos[1]) % A.shape[1]
A[x,y] = k # set values
print 'Result:\n',A
The output:
A:
[[ 0 1 2 3 4]
[ 5 6 7 8 9]
[10 11 12 13 14]
[15 16 17 18 19]
[20 21 22 23 24]]
Kernel:
[[ 0 -1 -2]
[-3 -4 -5]
[-6 -7 -8]]
Result:
[[-3 -6 2 3 0]
[-4 -7 7 8 -1]
[-5 -8 12 13 -2]
[15 16 17 18 19]
[20 21 22 23 24]]
As I mentioned in the comments, there is a good answer at How do I select a window from a numpy array with periodic boundary conditions?
Here is another simple way to do this
# First some setup
import numpy as np
A = np.arange(25).reshape((5, 5))
m, n = A.shape
and then
A[np.arange(i-1, i+2)%m].reshape((3, -1))[:,np.arange(j-1, j+2)%n]
It is somewhat harder to obtain something that you can assign to. Here is a somewhat slower version. In order to get a similar slice of values I would have to do
A.flat[np.array([np.arange(j-1,j+2)%n+a*n for a in xrange(i-1, i+2)]).ravel()].reshape((3,3))
In order to assign to this I would have to avoid the call to reshape and work directly with the flattened version returned by the fancy indexing. Here is an example:
n = 7
A = np.zeros((n, n))
for i in xrange(n-2, 0, -1):
A.flat[np.array([np.arange(i-1,i+2)%n+a*n for a in xrange(i-1, i+2)]).ravel()] = i+1
print A
which returns
[[ 2. 2. 2. 0. 0. 0. 0.]
[ 2. 2. 2. 3. 0. 0. 0.]
[ 2. 2. 2. 3. 4. 0. 0.]
[ 0. 3. 3. 3. 4. 5. 0.]
[ 0. 0. 4. 4. 4. 5. 6.]
[ 0. 0. 0. 5. 5. 5. 6.]
[ 0. 0. 0. 0. 6. 6. 6.]]