I have a network in Keras with many outputs, however, my training data only provides information for a single output at a time.
At the moment my method for training
Let's say you want to return output from multiple layers, maybe from some intermediate layers, but you need to optimize only one target output. Here's how you can do it:
inputs = Input(shape=(784,))
x = Dense(64, activation='relu')(inputs)
# you want to extract these values
useful_info = Dense(32, activation='relu', name='useful_info')(x)
# final output. used for loss calculation and optimization
result = Dense(1, activation='softmax', name='result')(useful_info)
None
for extra outputs:Give None
for outputs that you don't want to use for loss calculation and optimization
model = Model(inputs=inputs, outputs=[result, useful_info])
model.compile(optimizer='rmsprop',
loss=['categorical_crossentropy', None],
metrics=['accuracy'])
model.fit(my_inputs, {'result': train_labels}, epochs=.., batch_size=...)
# this also works:
#model.fit(my_inputs, [train_labels], epochs=.., batch_size=...)
Having one model you can run predict
only once to get all outputs you need:
predicted_labels, useful_info = model.predict(new_x)
In order to achieve this I ended up using the 'Functional API'. You basically create multiple models, using the same layers input and hidden layers but different output layers.
For example:
https://keras.io/getting-started/functional-api-guide/
from keras.layers import Input, Dense
from keras.models import Model
# This returns a tensor
inputs = Input(shape=(784,))
# a layer instance is callable on a tensor, and returns a tensor
x = Dense(64, activation='relu')(inputs)
x = Dense(64, activation='relu')(x)
predictions_A = Dense(1, activation='softmax')(x)
predictions_B = Dense(1, activation='softmax')(x)
# This creates a model that includes
# the Input layer and three Dense layers
modelA = Model(inputs=inputs, outputs=predictions_A)
modelA.compile(optimizer='rmsprop',
loss='categorical_crossentropy',
metrics=['accuracy'])
modelB = Model(inputs=inputs, outputs=predictions_B)
modelB.compile(optimizer='rmsprop',
loss='categorical_crossentropy',
metrics=['accuracy'])