In tensorflow function tf.nn.conv2d, the padding option just has \'SAME\' and \'VALID\'.
But in the conv layer of Caffe, there is pad option can define the number o
You can use tf.pad()
(see the doc) to pad the Tensor before applying tf.nn.conv2d(..., padding="VALID")
(valid padding means no padding).
For instance, if you want to pad the image with 2 pixels in height, and 1 pixel in width, and then apply a convolution with a 5x5 kernel:
input = tf.placeholder(tf.float32, [None, 28, 28, 3])
padded_input = tf.pad(input, [[0, 0], [2, 2], [1, 1], [0, 0]], "CONSTANT")
filter = tf.placeholder(tf.float32, [5, 5, 3, 16])
output = tf.nn.conv2d(padded_input, filter, strides=[1, 1, 1, 1], padding="VALID")
output
will have shape [None, 28, 26, 16]
, because you have only a padding of 1 in width.