I have got a collection aTable with 2 records:
{
\"title\" : \"record 1\",
\"fields\" : [
{
\"_id\" : 1,
To get what you want you will need a few things:
t.forEach(function( aRow ) {
var newFields = [];
aRow.fields.forEach( function( aField ){
var newItems = [];
aField.items.forEach( function( item ){
var aNewItem = { item: parseInt(item), ref: 0 };
newItems.push( aNewItem );
} );
newFields.push({ _id: aField._id, items: newItems });
} )
aTable.update(
{ _id: aRow._id },
{ "$set": { "fields": newFields } }
);
});
So basically you need to "re-construct" your arrays before updating
You can make changes directly in the whole object and then save it. Try the following snippet
db.aTable.find().forEach(function (itemWrapper){
itemWrapper.fields.forEach(function(field){
var items = field.items;
var newItems = [];
items.forEach(function(item){
var t = {'item':item,'key':0}
newItems.push(t);
})
field.items = newItems;
})
db.aTable.save(itemWrapper)
})
What I am doing is iterating over all items and making a new array with {item : 1 , key:0}
and then setting it back to items array in field object.
This is the output after update :
{
"_id" : ObjectId("5332a192ece4ce8362c7a553"),
"title" : "record 1",
"fields" : [
{
"_id" : 1,
"items" : [
{
"item" : 1,
"key" : 0
}
]
},
{
"_id" : 2,
"items" : [
{
"item" : 2,
"key" : 0
},
{
"item" : 3,
"key" : 0
},
{
"item" : 4,
"key" : 0
}
]
},
{
"_id" : 3,
"items" : [
{
"item" : 5,
"key" : 0
}
]
}
]
}
/* 1 */
{
"_id" : ObjectId("5332a192ece4ce8362c7a554"),
"title" : "record 2",
"fields" : [
{
"_id" : 4,
"items" : [
{
"item" : 7,
"key" : 0
},
{
"item" : 8,
"key" : 0
},
{
"item" : 9,
"key" : 0
},
{
"item" : 10,
"key" : 0
}
]
},
{
"_id" : 5,
"items" : []
},
{
"_id" : 6,
"items" : [
{
"item" : 11,
"key" : 0
},
{
"item" : 12,
"key" : 0
}
]
}
]
}
Starting Mongo 4.2
, db.collection.update() can accept an aggregation pipeline, finally allowing the update of a field based on its current value, and thus using a query instead of javascript:
// {
// title: "record 1",
// fields: [
// { _id: 1, items: [1] },
// { _id: 2, items: [2, 3, 4] },
// { _id: 3, items: [5] }
// ]
// }
db.collection.update(
{},
[{ $set: {
fields: { $map: {
input: "$fields",
as: "x",
in: {
_id: "$$x._id",
items: { $map: {
input: "$$x.items",
as: "y",
in: { item: "$$y", key: 0 }
}}
}
}}
}}],
{ multi: true }
)
// {
// title: "record 1",
// fields: [
// { _id: 1, items: [ { item: 1, key: 0 } ] },
// { _id: 2, items: [ { item: 2, key: 0 }, { item: 3, key: 0 }, { item: 4, key: 0 } ] },
// { _id: 3, items: [ { item: 5, key: 0 } ] }
// ]
// }
The first part {}
is the match query, filtering which documents to update (in this case all documents).
The second part [{ $set: { fields: { $map: { ... } } }]
is the update aggregation pipeline (note the squared brackets signifying the use of an aggregation pipeline):
[1, 2]
by [{ item: 1, key: 0 }, { item: 2, key: 0 }]
.{ multi: true }
, otherwise only the first matching document will be updated.