Generating all distinct partitions of a number

后端 未结 5 1897
北海茫月
北海茫月 2020-12-14 12:56

I am trying to write a C code to generate all possible partitions (into 2 or more parts) with distinct elements of a given number. The sum of all the numbers of a g

相关标签:
5条回答
  • 2020-12-14 13:39

    I sketched this solution (it can be beautified and optimized) that shouldn't generate duplicates:

    void partitions(int target, int curr, int* array, int idx)
    {
        if (curr + array[idx] == target)
        {
            for (int i=0; i <= idx; i++)
                cout << array[i] << " ";
            cout << endl;       
            return;
        }
        else if (curr + array[idx] > target)
        {
            return;
        }
        else
        {
            for(int i = array[idx]+1; i < target; i++)
            {
                array[idx+1] = i;
                partitions(target, curr + array[idx], array, idx+1);
            }
        }
    }
    
    int main(){
        int array[100];
        int N = 6;
        for(int i = 1; i < N; i++)
        {
            array[0] = i;
            partitions(N, 0, array, 0);
        }
    }
    
    0 讨论(0)
  • 2020-12-14 13:39

    You don't need recursion at all. The list of numbers is essentially a stack, and by iterating in order you ensure no duplicates.

    Here's a version which shows what I mean (you tagged this C, so I wrote it in C. In C++ you could use a dynamic container with push and pop, and tidy this up considerably).

    #include <stdio.h>
    #include <stdlib.h>
    
    void partition(int part)
    {
    int *parts;
    int *ptr;
    int i;
    int idx = 0;
    int tot = 0;
    int cur = 1;
    int max = 1;
    
        while((max * (max + 1)) / 2 <= part) max++;
    
        ptr = parts = malloc(sizeof(int) * max);
    
        for(;;) {
            if((tot += *ptr++ = cur++) < part) continue;
    
            if(tot == part) {
                for(i = 0 ; i < ptr-parts ; i++) {printf("%d ",parts[i]);}
                printf("\n");
            }
    
            do {
                if(ptr == parts) {free(parts); return;}
                tot -= cur = *--ptr;
            } while(++cur + tot > part);
        }
    }
    
    int main(int argc, char* argv[])
    {
        partition(6);
        return 0;
    }
    
    0 讨论(0)
  • 2020-12-14 13:41

    What you're trying to do doesn't make a lot of sense to me but here's how I would approach it.

    First, I'd create a loop that iterates i from 1 to n - 1. In the first loop, you could add the partition 1, i. Then I'd go recursive using the value in i to get all the sub-partitions that can also be added to 1.

    And then continue to 2, and so on.

    0 讨论(0)
  • 2020-12-14 13:46

    First, write a recursive algorithm that returns all partitions, including those that contain repeats.

    Second, write an algorithm that eliminates partitions that contain duplicate elements.

    EDIT:

    You can avoid results with duplicates by avoiding making recursive calls for already-seen numbers. Pseudocode:

    Partitions(n, alreadySeen)
     1. if n = 0 then return {[]}
     2. else then
     3.    results = {}
     4.    for i = 1 to n do
     5.       if i in alreadySeen then continue
     6.       else then
     7.          subresults = Partitions(n - i, alreadySeen UNION {i})
     8.          for subresult in subresults do
     9.             results = results UNION {[i] APPEND subresult}
    10.    return results
    

    EDIT:

    You can also avoid generating the same result more than once. Do this by modifying the range of the loop, so that you only add new elements in a monotonically increasing fashion:

    Partitions(n, mustBeGreaterThan)
    1. if n = 0 then return {[]}
    2. else then
    3.    results = {}
    4.    for i = (mustBeGreaterThan + 1) to n do
    5.       subresults = Partitions(n - i, i)
    6.       for subresult in subresults do
    7.          results = results UNION {[i] APPEND subresult}
    8.    return results
    
    0 讨论(0)
  • 2020-12-14 13:50

    It is another solution that is based on an iterative algorithm. It is much faster than @imreal's algorithm and marginally faster than @JasonD's algorithm.

    Time needed to compute n = 100

    $ time ./randy > /dev/null
    ./randy > /dev/null  0.39s user 0.00s system 99% cpu 0.393 total
    $ time ./jasond > /dev/null
    ./jasond > /dev/null  0.43s user 0.00s system 99% cpu 0.438 total
    $ time ./imreal > /dev/null
    ./imreal > /dev/null  3.28s user 0.13s system 99% cpu 3.435 total
    
    #include <stdio.h>
    #include <stdlib.h>
    #include <math.h>
    
    int next_partition(int *a, int* kp) {
        int k = *kp;
        int i, t, b;
    
        if (k == 1) return 0;
        if (a[k - 1] - a[k - 2] > 2) {
            b = a[k - 2] + 1;
            a[k - 2] = b;
            t = a[k - 1] - 1;
            i = k - 1;
            while (t >= 2*b + 3) {
                b += 1;
                a[i] = b;
                t -= b;
                i += 1;
            }
            a[i] = t;
            k = i + 1;
        } else {
            a[k - 2] = a[k - 2] + a[k - 1];
            a[k - 1] = 0;
            k = k - 1;
        }
        *kp = k;
        return 1;
    }
    
    int main(int argc, char* argv[])
    {
        int n = 100;
        int m = floor(0.5 * (sqrt(8*n + 1) - 1));
        int i, k;
        int *a;
        a = malloc(m * sizeof(int));
        k = m;
        for (i = 0; i < m - 1; i++) {
            a[i] = i + 1;
        }
        a[m - 1] = n - m*(m-1)/2;
    
        for (i = 0; i < k; i++) printf("%d ", a[i]);
        printf("\n");
    
        while (next_partition(a, &k)) {
            for (i = 0; i < k; i++) printf("%d ", a[i]);
            printf("\n");
        }
        free(a);
        return 0;
    }
    
    0 讨论(0)
提交回复
热议问题