Downsample a 1D numpy array

后端 未结 3 432
感动是毒
感动是毒 2020-12-14 07:57

I have a 1-d numpy array which I would like to downsample. Any of the following methods are acceptable if the downsampling raster doesn\'t perfectly fit the data:

相关标签:
3条回答
  • 2020-12-14 08:43

    If array size is not divisible by downsampling factor (R), reshaping (splitting) of array can be done using np.linspace followed by mean of each subarray.

    input_arr = np.arange(531)
    
    R = 150 (number of split)
    
    split_arr = np.linspace(0, len(input_arr), num=R+1, dtype=int)
    
    dwnsmpl_subarr = np.split(input_arr, split_arr[1:])
    
    dwnsmpl_arr = np.array( list( np.mean(item) for item in dwnsmpl_subarr[:-1] ) )
    
    0 讨论(0)
  • 2020-12-14 08:52

    Here are a few approaches using either linear interpolation or the Fourier method. These methods support upsampling as well as downsampling.

    import numpy as np
    import matplotlib.pyplot as plt
    from scipy.signal import resample
    from scipy.interpolate import interp1d
    
    def ResampleLinear1D(original, targetLen):
        original = np.array(original, dtype=np.float)
        index_arr = np.linspace(0, len(original)-1, num=targetLen, dtype=np.float)
        index_floor = np.array(index_arr, dtype=np.int) #Round down
        index_ceil = index_floor + 1
        index_rem = index_arr - index_floor #Remain
    
        val1 = original[index_floor]
        val2 = original[index_ceil % len(original)]
        interp = val1 * (1.0-index_rem) + val2 * index_rem
        assert(len(interp) == targetLen)
        return interp
    
    if __name__=="__main__":
    
        original = np.sin(np.arange(256)/10.0)
        targetLen = 100
    
        # Method 1: Use scipy interp1d (linear interpolation)
        # This is the simplest conceptually as it just uses linear interpolation. Scipy
        # also offers a range of other interpolation methods.
        f = interp1d(np.arange(256), original, 'linear')
        plt.plot(np.apply_along_axis(f, 0, np.linspace(0, 255, num=targetLen)))
    
        # Method 2: Use numpy to do linear interpolation
        # If you don't have scipy, you can do it in numpy with the above function
        plt.plot(ResampleLinear1D(original, targetLen))
    
        # Method 3: Use scipy's resample
        # Converts the signal to frequency space (Fourier method), then back. This
        # works efficiently on periodic functions but poorly on non-periodic functions.
        plt.plot(resample(original, targetLen))
    
        plt.show()
    
    0 讨论(0)
  • 2020-12-14 08:55

    In the simple case where your array's size is divisible by the downsampling factor (R), you can reshape your array, and take the mean along the new axis:

    import numpy as np
    a = np.array([1.,2,6,2,1,7])
    R = 3
    a.reshape(-1, R)
    => array([[ 1.,  2.,  6.],
             [ 2.,  1.,  7.]])
    
    a.reshape(-1, R).mean(axis=1)
    => array([ 3.        ,  3.33333333])
    

    In the general case, you can pad your array with NaNs to a size divisible by R, and take the mean using scipy.nanmean.

    import math, scipy
    b = np.append(a, [ 4 ])
    b.shape
    => (7,)
    pad_size = math.ceil(float(b.size)/R)*R - b.size
    b_padded = np.append(b, np.zeros(pad_size)*np.NaN)
    b_padded.shape
    => (9,)
    scipy.nanmean(b_padded.reshape(-1,R), axis=1)
    => array([ 3.        ,  3.33333333,  4.])
    
    0 讨论(0)
提交回复
热议问题