I did\'nt mean binary search tree.
for example, if I insert values 1,2,3,4,5 in to a binary search tree the inorder traversal will give 1,2,3,4,5 as output.
If you're after source for a comprehensive BinaryTree implementation you can learn from have a look at The C5 Generic Collection Library.
The tree class declaration part is, certainly, not the difficulty here. You basically stated exactly how to declare it, in the question:
class BinaryTree
{
private:
int data;
BinaryTree *left, *right;
};
This supports various forms of traversal, like so:
void Inorder(const BinaryTree *root)
{
if(root == 0)
return;
Inorder(root->left);
printf("now at %d\n", root->data);
Inorder(root->right);
}
You should be able to deduce pre- and post-order traversals from that. In a real implementation, the tree would probably be templated to store random data, the traversal routines would be more general (with a user-data input, or perhaps user-supplied per-node callback, or whatever), of course.
If I understand you correctly, you want to create a binary tree from an array
int[] values = new int[] {1, 2, 3, 4, 5};
BinaryTree tree = new BinaryTree(values);
this should prepopulate the binary tree with the values 1 - 5 as follows:
1
/ \
2 3
/ \
4 5
this can be done using the following class:
class BinaryTree
{
int value;
BinaryTree left;
BinaryTree right;
public BinaryTree(int[] values) : this(values, 0) {}
BinaryTree(int[] values, int index)
{
Load(this, values, index);
}
void Load(BinaryTree tree, int[] values, int index)
{
this.value = values[index];
if (index * 2 + 1 < values.Length)
{
this.left = new BinaryTree(values, index * 2 + 1);
}
if (index * 2 + 2 < values.Length)
{
this.right = new BinaryTree(values, index * 2 + 2);
}
}
}
class BstNode
{
public int data;
public BstNode(int data)
{
this.data = data;
}
public BstNode left;
public BstNode right;
}
class Program
{
public static BstNode Insert(BstNode root, int data)
{
if (root == null) root = new BstNode(data);
else if (data <= root.data) root.left = Insert(root.left, data);
else if (data > root.data) root.right = Insert(root.right, data);
return root;
}
public static void Main(string[] args)
{
// create/insert into BST
BstNode Root = null;
Root = Insert(Root, 15);
Root = Insert(Root, 10);
Root = Insert(Root, 20);
Root = Insert(Root, 8);
Root = Insert(Root, 12);
Root = Insert(Root, 17);
Root = Insert(Root, 25);
}
}
Since I have not received any answers to the question which I asked, I will post my own implementaion of the binary tree using arrays. now I know that array implementaion is easier than i thought ,but still i dont know how to implement the same using linked lists.
the code is in c#
class BinaryTree
{
private static int MAX_ELEM = 100; //initial size of the array
int lastElementIndex;
int?[] dataArray;
public BinaryTree()
{
dataArray = new int?[MAX_ELEM];
lastElementIndex = -1;
}
//function to insert data in to the tree
//insert as a complete binary tree
public void insertData(int data)
{
int?[] temp;
if (lastElementIndex + 1 < MAX_ELEM)
{
dataArray[++lastElementIndex] = data;
}
else
{ //double the size of the array on reaching the limit
temp = new int?[MAX_ELEM * 2];
for (int i = 0; i < MAX_ELEM; i++)
{
temp[i] = dataArray[i];
}
MAX_ELEM *= 2;
dataArray = temp;
dataArray[++lastElementIndex] = data;
}
}
//internal function used to get the left child of an element in the array
int getLeftChild(int index) {
if(lastElementIndex >= (2*index+1))
return (2*index + 1);
return -1;
}
//internal function used to get the right child of an element in the array
int getRightChild(int index) {
if(lastElementIndex >= (2*index+2))
return (2*index + 2);
return -1;
}
//function to check if the tree is empty
public bool isTreeEmpty() {
if (lastElementIndex == -1)
return true;
return false;
}
//recursive function for inorder traversal
public void traverseInOrder(int index) {
if (index == -1)
return;
traverseInOrder(getLeftChild(index));
Console.Write("{0} ", dataArray[index]);
traverseInOrder(getRightChild(index));
}
//recursive function for preorder traversal
public void traversePreOrder(int index) {
if (index == -1)
return;
Console.Write("{0} ", dataArray[index]);
traversePreOrder(getLeftChild(index));
traversePreOrder(getRightChild(index));
}
//recursive function for postorder traversal
public void traversePostOrder(int index) {
if (index == -1)
return;
traversePostOrder(getLeftChild(index));
traversePostOrder(getRightChild(index));
Console.Write("{0} ", dataArray[index]);
}
//function to traverse the tree in level order
public void traverseLevelOrder()
{
Console.WriteLine("\nPrinting Elements Of The Tree In Ascending Level Order\n");
if (lastElementIndex == -1)
{
Console.WriteLine("Empty Tree!...press any key to return");
Console.ReadKey();
return;
}
for (int i = 0; i <= lastElementIndex; i++)
{
Console.Write("{0} ", dataArray[i]);
}
Console.WriteLine("\n");
}
}