Fast numpy fancy indexing

前端 未结 4 1439
别跟我提以往
别跟我提以往 2020-12-14 04:40

My code for slicing a numpy array (via fancy indexing) is very slow. It is currently a bottleneck in program.

a.shape
(3218, 6)

ts = time.time(); a[rows][:,         


        
相关标签:
4条回答
  • 2020-12-14 05:13

    You can get some speed up if you slice using fancy indexing and broadcasting:

    from __future__ import division
    import numpy as np
    
    def slice_1(a, rs, cs) :
        return a[rs][:, cs]
    
    def slice_2(a, rs, cs) :
        return a[rs[:, None], cs]
    
    >>> rows, cols = 3218, 6
    >>> rs = np.unique(np.random.randint(0, rows, size=(rows//2,)))
    >>> cs = np.unique(np.random.randint(0, cols, size=(cols//2,)))
    >>> a = np.random.rand(rows, cols)
    >>> import timeit
    >>> print timeit.timeit('slice_1(a, rs, cs)',
                            'from __main__ import slice_1, a, rs, cs',
                            number=1000)
    0.24083110865
    >>> print timeit.timeit('slice_2(a, rs, cs)',
                            'from __main__ import slice_2, a, rs, cs',
                            number=1000)
    0.206566124519
    

    If you think in term of percentages, doing something 15% faster is always good, but in my system, for the size of your array, this is taking 40 us less to do the slicing, and it is hard to believe that an operation taking 240 us will be your bottleneck.

    0 讨论(0)
  • 2020-12-14 05:16

    Let my try to summarize the excellent answers by Jaime and TheodrosZelleke and mix in some comments.

    1. Advanced (fancy) indexing always returns a copy, never a view.
    2. a[rows][:,cols] implies two fancy indexing operations, so an intermediate copy a[rows] is created and discarded. Handy and readable, but not very efficient. Moreover beware that [:,cols] usually generates a Fortran contiguous copy form a C-cont. source.
    3. a[rows.reshape(-1,1),cols] is a single advanced indexing expression basing on the fact that rows.reshape(-1,1) and cols are broadcast to the shape of the intended result.
    4. A common experience is that indexing in a flattened array can be more efficient than fancy indexing, so another approach is

      indx = rows.reshape(-1,1)*a.shape[1] + cols
      a.take(indx)
      

      or

      a.take(indx.flat).reshape(rows.size,cols.size)
      
    5. Efficiency will depend on memory access patterns and whether the starting array is C-countinous or Fortran continuous, so experimentation is needed.

    6. Use fancy indexing only if really needed: basic slicing a[rstart:rstop:rstep, cstart:cstop:cstep] returns a view (although not continuous) and should be faster!

    0 讨论(0)
  • 2020-12-14 05:17

    Using np.ix_ you can a similar speed to ravel/reshape, but with code that is more clear:

    a = np.random.randn(3218, 1415)
    rows = np.random.randint(a.shape[0], size=2000)
    cols = np.random.randint(a.shape[1], size=6)
    a = np.random.randn(3218, 1415)
    rows = np.random.randint(a.shape[0], size=2000)
    cols = np.random.randint(a.shape[1], size=6)
    
    %timeit (a.ravel()[(cols + (rows * a.shape[1]).reshape((-1,1))).ravel()]).reshape(rows.size, cols.size)
    #101 µs ± 2.36 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
    
    
    %timeit ix_ = np.ix_(rows, cols); a[ix_]
    #135 µs ± 7.47 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
    
    ix_ = np.ix_(rows, cols)
    result1 = a[ix_]
    result2 = (a.ravel()[(cols + (rows * a.shape[1]).reshape((-1,1))).ravel()]).reshape(rows.size, cols.size)
    ​
    np.sum(result1 - result2)
    0.0
    
    0 讨论(0)
  • 2020-12-14 05:19

    To my surprise this, kind of lenghty expression, which calculates first linear 1D-indices, is more than 50% faster than the consecutive array indexing presented in the question:

    (a.ravel()[(
       cols + (rows * a.shape[1]).reshape((-1,1))
       ).ravel()]).reshape(rows.size, cols.size)
    

    UPDATE: OP updated the description of the shape of the initial array. With the updated size the speedup is now above 99%:

    In [93]: a = np.random.randn(3218, 1415)
    
    In [94]: rows = np.random.randint(a.shape[0], size=2000)
    
    In [95]: cols = np.random.randint(a.shape[1], size=6)
    
    In [96]: timeit a[rows][:, cols]
    10 loops, best of 3: 186 ms per loop
    
    In [97]: timeit (a.ravel()[(cols + (rows * a.shape[1]).reshape((-1,1))).ravel()]).reshape(rows.size, cols.size)
    1000 loops, best of 3: 1.56 ms per loop
    

    INITAL ANSWER: Here is the transcript:

    In [79]: a = np.random.randn(3218, 6)
    In [80]: a.shape
    Out[80]: (3218, 6)
    
    In [81]: rows = np.random.randint(a.shape[0], size=2000)
    In [82]: cols = np.array([1,3,4,5])
    

    Time method 1:

    In [83]: timeit a[rows][:, cols]
    1000 loops, best of 3: 1.26 ms per loop
    

    Time method 2:

    In [84]: timeit (a.ravel()[(cols + (rows * a.shape[1]).reshape((-1,1))).ravel()]).reshape(rows.size, cols.size)
    1000 loops, best of 3: 568 us per loop
    

    Check that results are actually the same:

    In [85]: result1 = a[rows][:, cols]
    In [86]: result2 = (a.ravel()[(cols + (rows * a.shape[1]).reshape((-1,1))).ravel()]).reshape(rows.size, cols.size)
    
    In [87]: np.sum(result1 - result2)
    Out[87]: 0.0
    
    0 讨论(0)
提交回复
热议问题