Is there a shorter way of dropping a column MultiIndex level (in my case, basic_amt
) except transposing it twice?
In [704]: test
Out[704]:
Here is an alternative solution which zips the levels together and joins them with underscore.
Derived from the above answer, and this was what I wanted to do when I found this answer. Thought I would share even if it does not answer the exact above question.
["_".join(pair) for pair in df.columns]
gives
['basic_amt_NSW', 'basic_amt_QLD', 'basic_amt_VIC', 'basic_amt_All']
Just set this as a the columns
df.columns = ["_".join(pair) for pair in df.columns]
basic_amt_NSW basic_amt_QLD basic_amt_VIC basic_amt_All
Faculty
All 1 1 2 4
Full Time 0 1 0 1
Part Time 1 0 2 3
How about simply reassigning df.columns
:
levels = df.columns.levels
labels = df.columns.labels
df.columns = levels[1][labels[1]]
For example:
import pandas as pd
columns = pd.MultiIndex.from_arrays([['basic_amt']*4,
['NSW','QLD','VIC','All']])
index = pd.Index(['All', 'Full Time', 'Part Time'], name = 'Faculty')
df = pd.DataFrame([(1,1,2,4),
(0,01,0,1),
(1,0,2,3)])
df.columns = columns
df.index = index
Before:
print(df)
basic_amt
NSW QLD VIC All
Faculty
All 1 1 2 4
Full Time 0 1 0 1
Part Time 1 0 2 3
After:
levels = df.columns.levels
labels = df.columns.labels
df.columns = levels[1][labels[1]]
print(df)
NSW QLD VIC All
Faculty
All 1 1 2 4
Full Time 0 1 0 1
Part Time 1 0 2 3
Another solution is to use MultiIndex.droplevel with rename_axis (new in pandas
0.18.0
):
import pandas as pd
cols = pd.MultiIndex.from_arrays([['basic_amt']*4,
['NSW','QLD','VIC','All']],
names = [None, 'Faculty'])
idx = pd.Index(['All', 'Full Time', 'Part Time'])
df = pd.DataFrame([(1,1,2,4),
(0,1,0,1),
(1,0,2,3)], index = idx, columns=cols)
print (df)
basic_amt
Faculty NSW QLD VIC All
All 1 1 2 4
Full Time 0 1 0 1
Part Time 1 0 2 3
df.columns = df.columns.droplevel(0)
#pandas 0.18.0 and higher
df = df.rename_axis(None, axis=1)
#pandas bellow 0.18.0
#df.columns.name = None
print (df)
NSW QLD VIC All
All 1 1 2 4
Full Time 0 1 0 1
Part Time 1 0 2 3
print (df.columns)
Index(['NSW', 'QLD', 'VIC', 'All'], dtype='object')
If you need both column names, use list
comprehension:
df.columns = ['_'.join(col) for col in df.columns]
print (df)
basic_amt_NSW basic_amt_QLD basic_amt_VIC basic_amt_All
All 1 1 2 4
Full Time 0 1 0 1
Part Time 1 0 2 3
print (df.columns)
Index(['basic_amt_NSW', 'basic_amt_QLD', 'basic_amt_VIC', 'basic_amt_All'], dtype='object')