The integral types in C and many languages which derive from it have two general usage cases: to represent numbers, or represent members of an abstract algebraic ring. For those unfamiliar with abstract algebra, the primary notion behind a ring is that adding, subtracting, or multiplying two items of a ring should yield another item of that ring--it shouldn't crash or yield a value outside the ring. On a 32-bit machine, adding unsigned 0x12345678 to unsigned 0xFFFFFFFF doesn't "overflow"--it simply yields the result 0x12345677 which is defined for the ring of integers congruent mod 2^32 (because the arithmetic result of adding 0x12345678 to 0xFFFFFFFF, i.e. 0x112345677, is congruent to 0x12345677 mod 2^32).
Conceptually, both purposes (representing numbers, or representing members of the ring of integers congruent mod 2^n) may be served by both signed and unsigned types, and many operations are the same for both usage cases, but there are some differences. Among other things, an attempt to add two numbers should not be expected to yield anything other than the correct arithmetic sum. While it's debatable whether a language should be required to generate the code necessary to guarantee that it won't (e.g. that an exception would be thrown instead), one could argue that for code which uses integral types to represent numbers such behavior would be preferable to yielding an arithmetically-incorrect value and compilers shouldn't be forbidden from behaving that way.
The implementers of the C standards decided to use signed integer types to represent numbers and unsigned types to represent members of the algebraic ring of integers congruent mod 2^n. By contrast, Java uses signed integers to represent members of such rings (though they're interpreted differently in some contexts; conversions among differently-sized signed types, for example, behave differently from among unsigned ones) and Java has neither unsigned integers nor any primitive integral types which behave as numbers in all non-exceptional cases.
If a language provided a choice of signed and unsigned representations for both numbers and algebraic-ring numbers, it might make sense to use unsigned numbers to represent quantities that will always be positive. If, however, the only unsigned types represent members of an algebraic ring, and the only types that represent numbers are the signed ones, then even if a value will always be positive it should be represented using a type designed to represent numbers.
Incidentally, the reason that (uint32_t)-1 is 0xFFFFFFFF stems from the fact that casting a signed value to unsigned is equivalent to adding unsigned zero, and adding an integer to an unsigned value is defined as adding or subtracting its magnitude to/from the unsigned value according to the rules of the algebraic ring which specify that if X=Y-Z, then X is the one and only member of that ring such X+Z=Y. In unsigned math, 0xFFFFFFFF is the only number which, when added to unsigned 1, yields unsigned zero.