changing a type into a reference
to a type, allows one to access the members of the type without creating an instance of the type. This seems to be true for bot
You want to be able to get back aT
, a T&
, or const
/volatile
qualified versions thereof. Since may not have a copy or move constructor, you can't just return the type, i.e., a reference needs to be returned. On the other hand, adding an rvalue teference to a reference type has no effect;
std::declval<T> -> T&&
std::declval<T&> -> T&
That is, adding an rvalue reference type has the effect of yielding a result which looks like an object of the passed type!
Yes, the use of add_rvalue_reference
gives the client the choice of specifying whether he wants an lvalue or rvalue object of the given type:
#include <type_traits>
#include <typeinfo>
#include <iostream>
#ifndef _MSC_VER
# include <cxxabi.h>
#endif
#include <memory>
#include <string>
#include <cstdlib>
template <typename T>
std::string
type_name()
{
typedef typename std::remove_reference<T>::type TR;
std::unique_ptr<char, void(*)(void*)> own
(
#ifndef _MSC_VER
abi::__cxa_demangle(typeid(TR).name(), nullptr,
nullptr, nullptr),
#else
nullptr,
#endif
std::free
);
std::string r = own != nullptr ? own.get() : typeid(TR).name();
if (std::is_const<TR>::value)
r += " const";
if (std::is_volatile<TR>::value)
r += " volatile";
if (std::is_lvalue_reference<T>::value)
r += "&";
else if (std::is_rvalue_reference<T>::value)
r += "&&";
return r;
}
int
main()
{
std::cout << type_name<decltype(std::declval<int>())>() << '\n';
std::cout << type_name<decltype(std::declval<int&>())>() << '\n';
}
Which for me outputs:
int&&
int&
With add_rvalue_reference
:
declval<Foo>()
is of type Foo&&
. declval<Foo&>()
is of type Foo&
(reference collapsing: “Foo& &&
” collapses to Foo&
).declval<Foo&&>()
is of type Foo&&
(reference collapsing: “Foo&& &&
” collapses to Foo&&
).With add_lvalue_reference
:
declval<Foo>()
would be of type Foo&
. declval<Foo&>()
would be of type Foo&
(reference collapsing: “Foo& &
” collapses to Foo&
).declval<Foo&&>()
would be of type Foo&
(!) (reference collapsing: “Foo&& &
” collapses to Foo&
).that is, you would never get a Foo&&
.
Also, the fact that declval<Foo>()
is of type Foo&&
is fine (you can write Foo&& rr = Foo();
but not Foo& lr = Foo();
). And that declval<Foo&&>()
would be of type Foo&
just feels “wrong”!
Edit: Since you asked for an example:
#include <utility>
using namespace std;
struct A {};
struct B {};
struct C {};
class Foo {
public:
Foo(int) { } // (not default-constructible)
A onLvalue() & { return A{}; }
B onRvalue() && { return B{}; }
C onWhatever() { return C{}; }
};
decltype( declval<Foo& >().onLvalue() ) a;
decltype( declval<Foo&&>().onRvalue() ) b;
decltype( declval<Foo >().onWhatever() ) c;
If declval
used add_lvalue_reference
you couldn't use onRvalue()
with it (second decltype
).
An example of where you need control over the returned type can be found in my df.operators library, when you need to provide a noexcept
specification. Here's a typical method:
friend T operator+( const T& lhs, const U& rhs )
noexcept( noexcept( T( lhs ),
std::declval< T& >() += rhs,
T( std::declval< T& >() ) ) )
{
T nrv( lhs );
nrv += rhs;
return nrv;
}
In generic code, you need to be exact about what you are doing. In the above, T
and U
are types outside of my control and the noexcept
specification for a copy from a const lvalue reference, a non-const lvalue reference and an rvalue reference could be different. I therefore need to be able to express cases like:
T
from a T&
? (Use T(std::declval<T&>())
)T
from a const T&
? (Use T(std::declval<const T&>())
)T
from a T&&
? (Use T(std::declval<T>())
)Luckily, std::declval
allows the above by using std::add_rvalue_reference
and reference the collapsing rules.