I have a question about Node.js streams - specifically how they work conceptually.
There is no lack of documentation on how to use streams. But I\'ve had difficulty
The below chart seems to be a pretty accurate 10.000 feet overview / diagram for the the node streams class.
It represents streams3
, contributed by Chris Dickinson.
So first of all, what are streams? Well, with streams we can process meaning read and write data piece by piece without completing the whole read or write operation. Therefore we don't have to keep all the data in memory to do these operations.
For example, when we read a file using streams, we read part of the data, do something with it, then free our memory, and repeat this until the entire file has been processed. Or think of YouTube or Netflix, which are both called streaming companies because they stream video using the same principle.
So instead of waiting until the entire video file loads, the processing is done piece by piece or in chunks so that you can start watching even before the entire file has been downloaded. So the principle here is not just about Node.JS. But universal to computer science in general.
So as you can see, this makes streams the perfect candidate for handing large volumes of data like for example, video or also data that we're receiving piece by piece from an external source. Also, streaming makes the data processing more efficient in terms of memory because there is no need to keep all the data in memory and also in terms of time because we can start processing the data as it arrives, rather than waiting until everything arrives.
How they are implemented in Node.JS:
So in Node, there are four fundamental types of streams: readable streams, writable streams, duplex streams, and transform streams. But the readable and writeable ones are the most important ones, readable streams are the ones from which we can read and we can consume data. Streams are everywhere in the core Node modules, for example, the data that comes in when an http server gets a request is actually a readable stream. So all the data that is sent with the request comes in piece by piece and not in one large piece. Also, another example from the file system is that we can read a file piece by piece by using a read screen from the FS module, which can actually be quite useful for large text files.
Well, another important thing to note is that streams are actually instances of the EventEmitter class. Meaning that all streams can emit and listen to named events. In the case of readable streams, they can emit, and we can listen to many different events. But the most important two are the data and the end events. The data event is emitted when there is a new piece of data to consume, and the end event is emitted as soon as there is no more data to consume. And of course, we can then react to these events accordingly.
Finally, besides events, we also have important functions that we can use on streams. And in the case of readable streams, the most important ones are the pipe and the read functions. The super important pipe function, which basically allows us to plug streams together, passing data from one stream to another without having to worry much about events at all.
Next up, writeable streams are the ones to which we can write data. So basically, the opposite of readable streams. A great example is the http response that we can send back to the client and which is actually a writeable stream. So a stream that we can write data into. So when we want to send data, we have to write it somewhere, right? And that somewhere is a writeable stream, and that makes perfect sense, right?
For example, if we wanted to send a big video file to a client, we would just like Netflix or YouTube do. Now about events, the most important ones are the drain and the finish events. And the most important functions are the write and end functions.
About duplex streams. They're simply streams that are both readable and writeable at the same time. These are a bit less common. But anyway, a good example would be a web socket from the net module. And a web socket is basically just a communication channel between client and server that works in both directions and stays open once the connection has been established.
Finally, transform streams are duplex streams, so streams that are both readable and writeable, which at the same time can modify or transform the data as it is read or written. A good example of this one is the zlib core module to compress data which actually uses a transform stream.
*** Node implemented these http requests and responses as streams, and we can then consume, we can use them using the events and functions that are available for each type of stream. We could of course also implement our own streams and then consume them using these same events and functions.
Now let's try some example:
const fs = require('fs');
const server = require('http').createServer();
server.on('request', (req, res) =>{
fs.readFile('./txt/long_file.txt', (err, data)=>{
if(err) console.log(err);
res.end(data);
});
});
server.listen('8000','127.0.01', ()=>{
console.log(this);
});
Suppose long_file.txt file contain 1000000K lines and each line contain more thean 100 words, so this is a hug file with a big chunk of data, now in the above example problem is by using readFile() function node will load entire file into memory, because only after loading the whole file into memory node can transfar the data as a responce object.
When the file is big, and also when there are a ton of request hitting your server, by means of time node process will very quickly run out of resources and your app will quit working, everything will crash.
Let's try to find a solution by using stream:
const fs = require('fs');
const server = require('http').createServer();
server.on('request', (req, res) =>{
const readable = fs.createReadStream('./txt/long_file.txt');
readable.on('data', chunk=>{
res.write(chunk);
});
readable.on('end',()=>{
res.end();
})
readable.on('error', err=>{
console.log('err');
res.statusCode=500;
res.end('File not found');
});
});
server.listen('8000','127.0.01', ()=>{
console.log(this);
});
Well in the above example with the stream, we are effectively streaming the file, we are reading one piece of the file, and as soon as that's available, we send it right to the client, using the write method of the respond stream. Then when the next pice is available then that piece will be sent, and all the way until the entire file is read and streamed to the client.
So the stream is basically finished reading the data from the file, the end event will be emitted to signals that no more data will be written to this writable stream.
With the above practice, we solved previous problem, but still, there is a huge problem remain with the above example which is called backpressure.
The problem is that our readable stream, the one that we are using to read files from the disk, is much much faster than actually sending the result with the response writable stream over the network. And this will overwhelm the response stream, which cannot handle all this incoming data so fast and this problem is called backpressure.
The solution is using the pipe operator, it will handle the speed of data coming in and speed of data going out.
const fs = require('fs');
const server = require('http').createServer();
server.on('request', (req, res) =>{
const readable = fs.createReadStream('./txt/long_file.txt');
readable.pipe(res);
});
server.listen('8000','127.0.01', ()=>{
console.log(this);
});
The first thing to note is: node.js streams are not limited to HTTP requests. HTTP requests / Network resources are just one example of a stream in node.js.
Streams are useful for everything that can be processed in small chunks. They allow you to process potentially huge resources in smaller chunks that fit into your RAM more easily.
Say you have a file (several gigabytes in size) and want to convert all lowercase into uppercase characters and write the result to another file. The naive approach would read the whole file using fs.readFile (error handling omitted for brevity):
fs.readFile('my_huge_file', function (err, data) {
var convertedData = data.toString().toUpperCase();
fs.writeFile('my_converted_file', convertedData);
});
Unfortunately this approch will easily overwhelm your RAM as the whole file has to be stored before processing it. You would also waste precious time waiting for the file to be read. Wouldn't it make sense to process the file in smaller chunks? You could start processing as soon as you get the first bytes while waiting for the hard disk to provide the remaining data:
var readStream = fs.createReadStream('my_huge_file');
var writeStream = fs.createWriteStream('my_converted_file');
readStream.on('data', function (chunk) {
var convertedChunk = chunk.toString().toUpperCase();
writeStream.write(convertedChunk);
});
readStream.on('end', function () {
writeStream.end();
});
This approach is much better:
Once you open the stream node.js will open the file and start reading from it. Once the operating system passes some bytes to the thread that's reading the file it will be passed along to your application.
Coming back to the HTTP streams:
On pausing the HTTP stream: This is not done at the HTTP level, but way lower. If you pause the stream node.js will simply stop reading from the underlying TCP socket. What is happening then is up to the kernel. It may still buffer the incoming data, so it's ready for you once you finished your current work. It may also inform the sender at the TCP level that it should pause sending data. Applications don't need to deal with that. That is none of their business. In fact the sender application probably does not even realize that you are no longer actively reading!
So it's basically about being provided data as soon as it is available, but without overwhelming your resources. The underlying hard work is done either by the operating system (e.g. net
, fs
, http
) or by the author of the stream you are using (e.g. zlib
which is a Transform
stream and usually bolted onto fs
or net
).
I think you are overthinking how all this works and I like it.
Streams are good for two things:
when an operation is slow and it can give you partials results as it gets them. For example read a file, it is slow because HDDs are slow and it can give you parts of the file as it reads it. With streams you can use these parts of the file and start to process them right away.
they are also good to connect programs together (read functions). Just as in the command line you can pipe different programs together to produce the desired output. Example: cat file | grep word
.
Most of these operations that take time to process and can give you partial results as it gets them are not done by Node.js they are done by the V8 JS Engine and it only hands those results to JS for you to work with them.
There are different encodings a web page can be send as. In the beginning there was only one way. Where a whole page was sent when it was requested. Now it has more efficient encodings to do this. One of them is chunked where parts of the web page are sent until the whole page is sent. This is good because a web page can be processed as it is received. Imagine a web browser. It can start to render websites before the download is complete.
First, Node.js streams only work within the same Node.js program. Node.js streams can't interact with a stream in another server or even program.
That means that in the example below, Node.js can't talk to the webserver. It can't tell it to pause or resume.
Node.js <-> Network <-> Webserver
What really happens is that Node.js asks for a webpage and it starts to download it and there is no way to stop that download. Just dropping the socket.
It starts to buffer the request until you are ready to start to consume it again. But the download never stopped.
I have a whole answer prepared to explain how the Event Loop works but I think it is better for you to watch this talk.