Priority Queues have a priority value and data, for every entry.
Thus, when adding a new element to the queue, it bubbles up to the surface if it has a higher priori
Below is what I believe to be a truly efficient version of a PriorityQueue
which uses an array-based binary heap (where the root is at index 0
, and the children of a node at index i
are at indices 2i + 1
and 2i + 2
, respectively).
This implementation includes the classical priority queue methods like push
, peek
, pop
, and size
, as well as convenience methods isEmpty
and replace
(the latter being a more efficient substitute for a pop
followed immediately by a push
). Values are stored not as [value, priority]
pairs, but simply as value
s; this allows for automatic prioritization of types that can be natively compared using the >
operator. A custom comparator function passed to the PriorityQueue
constructor can be used to emulate the behavior of pairwise semantics, however, as shown in the example below.
const top = 0;
const parent = i => ((i + 1) >>> 1) - 1;
const left = i => (i << 1) + 1;
const right = i => (i + 1) << 1;
class PriorityQueue {
constructor(comparator = (a, b) => a > b) {
this._heap = [];
this._comparator = comparator;
}
size() {
return this._heap.length;
}
isEmpty() {
return this.size() == 0;
}
peek() {
return this._heap[top];
}
push(...values) {
values.forEach(value => {
this._heap.push(value);
this._siftUp();
});
return this.size();
}
pop() {
const poppedValue = this.peek();
const bottom = this.size() - 1;
if (bottom > top) {
this._swap(top, bottom);
}
this._heap.pop();
this._siftDown();
return poppedValue;
}
replace(value) {
const replacedValue = this.peek();
this._heap[top] = value;
this._siftDown();
return replacedValue;
}
_greater(i, j) {
return this._comparator(this._heap[i], this._heap[j]);
}
_swap(i, j) {
[this._heap[i], this._heap[j]] = [this._heap[j], this._heap[i]];
}
_siftUp() {
let node = this.size() - 1;
while (node > top && this._greater(node, parent(node))) {
this._swap(node, parent(node));
node = parent(node);
}
}
_siftDown() {
let node = top;
while (
(left(node) < this.size() && this._greater(left(node), node)) ||
(right(node) < this.size() && this._greater(right(node), node))
) {
let maxChild = (right(node) < this.size() && this._greater(right(node), left(node))) ? right(node) : left(node);
this._swap(node, maxChild);
node = maxChild;
}
}
}
{const top=0,parent=c=>(c+1>>>1)-1,left=c=>(c<<1)+1,right=c=>c+1<<1;class PriorityQueue{constructor(c=(d,e)=>d>e){this._heap=[],this._comparator=c}size(){return this._heap.length}isEmpty(){return 0==this.size()}peek(){return this._heap[top]}push(...c){return c.forEach(d=>{this._heap.push(d),this._siftUp()}),this.size()}pop(){const c=this.peek(),d=this.size()-1;return d>top&&this._swap(top,d),this._heap.pop(),this._siftDown(),c}replace(c){const d=this.peek();return this._heap[top]=c,this._siftDown(),d}_greater(c,d){return this._comparator(this._heap[c],this._heap[d])}_swap(c,d){[this._heap[c],this._heap[d]]=[this._heap[d],this._heap[c]]}_siftUp(){for(let c=this.size()-1;c>top&&this._greater(c,parent(c));)this._swap(c,parent(c)),c=parent(c)}_siftDown(){for(let d,c=top;left(c)<this.size()&&this._greater(left(c),c)||right(c)<this.size()&&this._greater(right(c),c);)d=right(c)<this.size()&&this._greater(right(c),left(c))?right(c):left(c),this._swap(c,d),c=d}}window.PriorityQueue=PriorityQueue}
// Default comparison semantics
const queue = new PriorityQueue();
queue.push(10, 20, 30, 40, 50);
console.log('Top:', queue.peek()); //=> 50
console.log('Size:', queue.size()); //=> 5
console.log('Contents:');
while (!queue.isEmpty()) {
console.log(queue.pop()); //=> 40, 30, 20, 10
}
// Pairwise comparison semantics
const pairwiseQueue = new PriorityQueue((a, b) => a[1] > b[1]);
pairwiseQueue.push(['low', 0], ['medium', 5], ['high', 10]);
console.log('\nContents:');
while (!pairwiseQueue.isEmpty()) {
console.log(pairwiseQueue.pop()[0]); //=> 'high', 'medium', 'low'
}
.as-console-wrapper{min-height:100%}
You should use standard libraries like e.g. the Closure Library (goog.structs.PriorityQueue
):
https://google.github.io/closure-library/api/goog.structs.PriorityQueue.html
By clicking at the source code, you will know it is actually linking to goog.structs.Heap
which you can follow:
https://github.com/google/closure-library/blob/master/closure/goog/structs/heap.js
I was not satisfied with the efficiency of existing priority queue implementations, so I decided to make my own:
https://github.com/luciopaiva/heapify
npm i heapify
This will run faster than any other publicly known implementation due to the use of typed arrays.
Works on both client and server ends, code base with 100% test coverage, tiny library (~100 LoC). Also, the interface is really simple. Here's some code:
import Heapify from "heapify";
const queue = new Heapify();
queue.push(1, 10); // insert item with key=1, priority=10
queue.push(2, 5); // insert item with key=2, priority=5
queue.pop(); // 2
queue.peek(); // 1
queue.peekPriority(); // 10