Implementing and ploting a perceptron in MATLAB

前端 未结 3 480
隐瞒了意图╮
隐瞒了意图╮ 2020-12-13 11:29

I´m reviewing a code from Toronto perceptron MATLAB code

The code is

function [w] = perceptron(X,Y,w_init)

w = w_init;
for iteration = 1 : 100  %&l         


        
相关标签:
3条回答
  • 2020-12-13 11:57

    try this:

    perceptron([1 2 1 2], [1 0 1 0], 0.5);
    
    0 讨论(0)
  • 2020-12-13 12:08

    You should first understand what is the meaning of each of the inputs:

    • X is the input matrix of examples, of size M x N, where M is the dimension of the feature vector, and N the number of samples. Since the perceptron model for prediction is Y=w*X+b, you have to supply one extra dimension in X which is constant, usually set to 1, so the b term is "built-in" into X. In the example below for X, I set the last entry of X to be 1 in all samples.
    • Y is the correct classification for each sample from X (the classification you want the perceptron to learn), so it should be a N dimensional row vector - one output for each input example. Since the perceptron is a binary classifier, it should have only 2 distinct possible values. Looking in the code, you see that it checks for the sign of the prediction, which tells you that the allowed values of Y should be -1,+1 (and not 0,1 for example).
    • w is the weight vector you are trying to learn.

    So, try to call the function with:

    X=[0 0; 0 1; 1 1];
    Y=[1 -1];
    w=[.5; .5; .5];
    

    EDIT

    Use the following code to call the perceptron alg and see the results graphically:

    % input samples
    X1=[rand(1,100);rand(1,100);ones(1,100)];   % class '+1'
    X2=[rand(1,100);1+rand(1,100);ones(1,100)]; % class '-1'
    X=[X1,X2];
    
    % output class [-1,+1];
    Y=[-ones(1,100),ones(1,100)];
    
    % init weigth vector
    w=[.5 .5 .5]';
    
    % call perceptron
    wtag=perceptron(X,Y,w);
    % predict
    ytag=wtag'*X;
    
    
    % plot prediction over origianl data
    figure;hold on
    plot(X1(1,:),X1(2,:),'b.')
    plot(X2(1,:),X2(2,:),'r.')
    
    plot(X(1,ytag<0),X(2,ytag<0),'bo')
    plot(X(1,ytag>0),X(2,ytag>0),'ro')
    legend('class -1','class +1','pred -1','pred +1')
    
    0 讨论(0)
  • 2020-12-13 12:08

    If you are interested, here is a little perceptron demo written in quite a tutorial manner:

    function perceptronDemo
    %PERCEPTRONDEMO
    %
    %   A simple demonstration of the perceptron algorithm for training
    %   a linear classifier, made as readable as possible for tutorial
    %   purposes. It is derived from the treatment of linear learning
    %   machines presented in Chapter 2 of "An Introduction to Support
    %   Vector Machines" by Nello Cristianini and John Shawe-Taylor.
    %
    %
    
        Data  = createTrainingData;
        Model = trainPerceptron( Data );
    
    end
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    function Model = trainPerceptron( Data )
    %TRAINPERCEPTRON
    
        DOWN   = 1;
        ACROSS = 2;
    
        assert( isequal( unique( Data.labels ), [-1; +1] ), ...
            'Labels must be -1 or +1' );
    
        % ---------------------------------------------------------------------
        % Normalise the data by calculating z-scores
        %
        %   This makes plotting easier, but is not needed by the algorithm.
        %
    
        sampleMean   = mean( Data.samples );
        sampleStdDev = std(  Data.samples );
        Data.samples = bsxfun( @minus,   Data.samples, sampleMean   );
        Data.samples = bsxfun( @rdivide, Data.samples, sampleStdDev );
    
        % ---------------------------------------------------------------------
        % Calculate the squared radius of the smallest ball that encloses the
        % data and is centred on the origin. This is used to provide an
        % appropriate range and step size when updating the threshold (bias)
        % parameter.
        %
    
        sampleSize = size( Data.samples, DOWN );
        maxNorm    = realmin;
        for iObservation = 1:sampleSize
            observationNorm = norm( Data.samples(iObservation,:) );
            if observationNorm > maxNorm
                maxNorm = observationNorm;
            end
        end
        enclosingBallRadius        = maxNorm;
        enclosingBallRadiusSquared = enclosingBallRadius .^ 2;
    
        % ---------------------------------------------------------------------
        % Define the starting weight vector and bias. These should be zeros,
        % as the algorithm omits a learning rate, and it is suggested in
        % Cristianini & Shawe-Taylor that learning rate may only be omitted
        % safely when the starting weight vector and bias are zero.
        %
    
        Model.weights = [0.0 0.0];
        Model.bias    = 0.0;
    
        % ---------------------------------------------------------------------
        % Run the perceptron training algorithm
        %
        %   To prevent program running forever when nonseparable data are
        %   provided, limit the number of steps in the outer loop.
        %
    
        maxNumSteps = 1000;
    
        for iStep = 1:maxNumSteps
    
            isAnyObsMisclassified = false;
    
            for iObservation = 1:sampleSize;
    
                inputObservation = Data.samples( iObservation, : );
                desiredLabel     = Data.labels(  iObservation    ); % +1 or -1
    
                perceptronOutput = sum( Model.weights .* inputObservation, ACROSS ) + Model.bias;
                margin           = desiredLabel * perceptronOutput;
    
                isCorrectLabel   = margin > 0;
    
                % -------------------------------------------------------------
                % If the model misclassifies the observation, update the
                % weights and the bias.
                %
    
                if ~isCorrectLabel
    
                    isAnyObsMisclassified = true;
    
                    weightCorrection = desiredLabel  * inputObservation;
                    Model.weights    = Model.weights + weightCorrection;
    
                    biasCorrection   = desiredLabel .* enclosingBallRadiusSquared;
                    Model.bias       = Model.bias   + biasCorrection;
    
                    displayPerceptronState( Data, Model );
    
                end % if this observation misclassified.
    
            end % loop over observations
    
            if ~isAnyObsMisclassified
                disp( 'Done!' );
                break;
            end
    
        end % outer loop
    
    end % TRAINPERCEPTRON
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    function Data = createTrainingData
    %CREATETRAININGDATA
    %
    %   Return a structure containing training data suitable for linear
    %   classification.
    %
    
        sampleAsize   = 1024;
        sampleBsize   = 1024;
    
        sampleAmean   = [ 5.5 5.0 ];
        sampleAstdDev = [ 0.5 1.0 ];
    
        sampleBmean   = [ 2.5 3.0 ];
        sampleBstdDev = [ 0.3 0.7 ];
    
        Data.samples  = [ normallyDistributedSample( sampleAsize, sampleAmean, sampleAstdDev ); ...
                          normallyDistributedSample( sampleBsize, sampleBmean, sampleBstdDev ) ];
    
        Data.labels   = [  ones(sampleAsize,1); ...
                          -ones(sampleBsize,1) ];
    
        % ---------------------------------------------------------------------
        % Randomly permute samples & class labels.
        %
        %   This is not really necessary, but done to illustrate that the order
        %   in which observations are evaluated does not matter.
        %
    
        randomOrder   = randperm( sampleAsize + sampleBsize );
        Data.samples  = Data.samples( randomOrder, : );
        Data.labels   = Data.labels(  randomOrder, : );
    
    end % CREATETRAININGDATA
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    function samples = normallyDistributedSample( sampleSize, sampleMean, sampleStdDev )
    %NORMALDISTRIBUTIONSAMPLE
    %
    %   Draw a sample from a normal distribution with specified mean and
    %   standard deviation.
    %
    
        assert(    isequal( size( sampleMean ), size( sampleStdDev ) ) ...
                && 1 == size( sampleMean, 1 ),                         ...
            'Sample mean and standard deviation must be row vectors of equal length.' );
    
        numFeatures = numel( sampleMean );
        samples     = randn( sampleSize, numFeatures );
        samples     = bsxfun( @times, samples, sampleStdDev );
        samples     = bsxfun( @plus,  samples, sampleMean   );
    
    end % NORMALDISTRIBUTIONSAMPLE
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    function displayPerceptronState( Data, Model )
    %DISPLAYPERCEPTRONSTATE
    
        hFig = figure( 1 );
        clf;
        set( hFig,                        ...
            'NumberTitle', 'off',         ...
            'Name',         mfilename,    ...
            'MenuBar',      'none',       ...
            'Color',        [1.0 1.0 1.0] );
    
        displayXmin = -4;
        displayXmax =  4;
        displayYmin = -4;
        displayYmax =  4;
    
        hAx = subplot( 1, 1, 1 );
        axis('equal');
        set( hAx,                                  ...
            'Box',      'on',                      ...
            'NextPlot', 'add',                     ...
            'xgrid',    'on',                      ...
            'ygrid',    'on',                      ...
            'xlim',     [displayXmin displayXmax], ... % Bounds suitable for Z-scored data
            'ylim',     [displayYmin displayYmax]  );
        xlabel( 'x_1' );
        ylabel( 'x_2' );
    
        % ---------------------------------------------------------------------
        % Plot data points from the two classes
        %
    
        isPositiveClass = Data.labels >  0;
        isNegativeClass = Data.labels <= 0;
    
        plot( hAx, Data.samples(isPositiveClass,1), Data.samples(isPositiveClass,2), 'b+' );
        plot( hAx, Data.samples(isNegativeClass,1), Data.samples(isNegativeClass,2), 'rx' );
    
        % ---------------------------------------------------------------------
        % Display parameters for separating hyperplane in title
        %
    
        xWeight   = Model.weights(1);
        yWeight   = Model.weights(2);
        bias      = Model.bias;
    
        szTitle   = sprintf( 'Linear classifier parameters: %0.2f x_1 + %0.2f x_2 + %0.2f = 0', xWeight, yWeight, bias );
        title( szTitle );
    
        % ---------------------------------------------------------------------
        % Plot separating hyperplane
        %
    
        y1 = ( (xWeight*displayXmin) + bias ) ./ -yWeight;
        y2 = ( (xWeight*displayXmax) + bias ) ./ -yWeight;
    
        plot( hAx, [displayXmin; displayXmax], [y1, y2], 'k-', 'linewidth', 2 );
    
        pause(0.1);
    
    end % DISPLAYPERCEPTRONSTATE
    
    0 讨论(0)
提交回复
热议问题