What is the difference between Obfuscation, Hashing, and Encryption?
Here is my understanding:
Hashing is one-way task of creating one value from another. The algorithm should try to create a value that is as short and as unique as possible.
obfuscation is making something unreadable without changing semantics. It involves value transformation, removing whitespace, etc. Some forms of obfuscation can also be one-way,so it's impossible to get the starting value
encryption is two-way, and there's always some decryption working the other way around.
So, yes, you are mostly correct.
Hashing is a technique of creating semi-unique keys based on larger pieces of data. In a given hash you will eventually have "collisions" (e.g. two different pieces of data calculating to the same hash value) and when you do, you typically create a larger hash key size.
obfuscation generally involves trying to remove helpful clues (i.e. meaningful variable/function names), removing whitespace to make things hard to read, and generally doing things in convoluted ways to make following what's going on difficult. It provides no serious level of security like "true" encryption would.
Encryption can follow several models, one of which is the "secret" method, called private key encryption where both parties have a secret key. Public key encryption uses a shared one-way key to encrypt and a private recipient key to decrypt. With public key, only the recipient needs to have the secret.
That's a high level explanation. I'll try to refine them:
Hashing - in a perfect world, it's a random oracle. For the same input X, you always recieve the same output Y, that is in NO WAY related to X. This is mathematically impossible (or at least unproven to be possible). The closest we get is trapdoor functions. H(X) = Y for with H-1(Y) = X is so difficult to do you're better off trying to brute force a Z such that H(Z) = Y
Obfuscation (my opinion) - Any function f, such that f(a) = b where you rely on f being secret. F may be a hash function, but the "obfuscation" part implies security through obscurity. If you never saw ROT13 before, it'd be obfuscation
Encryption - Ek(X) = Y, Dl(Y) = X where E is known to everyone. k and l are keys, they may be the same (in symmetric, they are the same). Y is the ciphertext, X is the plaintext.
All fine, except obfuscation is not really similar to encryption - sometimes it doesn't even involve ciphers as simple as ROT13.
Obfuscation is hiding or making something harder to understand.
Hashing takes an input, runs it through a function, and generates an output that can be a reference to the input. It is not necessarily unique, a function can generate the same output for different inputs.
Encryption transforms the input into an output in a unique manner. There is a one-to-one correlation so there is no potential loss of data or confusion - the output can always be transformed back to the input with no ambiguity.