Using the LRU Cache decorator found here: http://code.activestate.com/recipes/578078-py26-and-py30-backport-of-python-33s-lru-cache/
from lru_cache import lr
Assuming you don't want to modify the code (e.g., because you want to be able to just port to 3.3 and use the stdlib functools.lru_cache, or use functools32 out of PyPI instead of copying and pasting a recipe into your code), there's one obvious solution: Create a new decorated instance method with each instance.
class Test:
def cached_method(self, x):
return x + 5
def __init__(self):
self.cached_method = lru_cache(maxsize=16)(self.cached_method)
How about this: a function decorator that wraps the method with lru_cache
the first time it's called on each instance?
def instance_method_lru_cache(*cache_args, **cache_kwargs):
def cache_decorator(func):
@wraps(func)
def cache_factory(self, *args, **kwargs):
print('creating cache')
instance_cache = lru_cache(*cache_args, **cache_kwargs)(func)
instance_cache = instance_cache.__get__(self, self.__class__)
setattr(self, func.__name__, instance_cache)
return instance_cache(*args, **kwargs)
return cache_factory
return cache_decorator
Use it like this:
class Foo:
@instance_method_lru_cache()
def times_2(self, bar):
return bar * 2
foo1 = Foo()
foo2 = Foo()
print(foo1.times_2(2))
# creating cache
# 4
foo1.times_2(2)
# 4
print(foo2.times_2(2))
# creating cache
# 4
foo2.times_2(2)
# 4
Here's a gist on GitHub with some inline documentation.
These days, methodtools
will work
from methodtools import lru_cache
class Test:
@lru_cache(maxsize=16)
def cached_method(self, x):
return x + 5
You need to install methodtools
pip install methodtools
If you are still using py2, then functools32 also is required
pip install functools32