I have an application where a Hilbert R-Tree (wikipedia) (citeseer) would seem to be an appropriate data structure. Specifically, it requires reasonably fast spatial querie
See uzaygezen.
Below is my java code adapted from C code in the paper "Encoding and decoding the Hilbert order" by Xian Lu and Gunther Schrack, published in Software: Practice and Experience Vol. 26 pp 1335-46 (1996).
Hope this helps. Improvements welcome !
Michael
/**
* Find the Hilbert order (=vertex index) for the given grid cell
* coordinates.
* @param x cell column (from 0)
* @param y cell row (from 0)
* @param r resolution of Hilbert curve (grid will have Math.pow(2,r)
* rows and cols)
* @return Hilbert order
*/
public static int encode(int x, int y, int r) {
int mask = (1 << r) - 1;
int hodd = 0;
int heven = x ^ y;
int notx = ~x & mask;
int noty = ~y & mask;
int temp = notx ^ y;
int v0 = 0, v1 = 0;
for (int k = 1; k < r; k++) {
v1 = ((v1 & heven) | ((v0 ^ noty) & temp)) >> 1;
v0 = ((v0 & (v1 ^ notx)) | (~v0 & (v1 ^ noty))) >> 1;
}
hodd = (~v0 & (v1 ^ x)) | (v0 & (v1 ^ noty));
return interleaveBits(hodd, heven);
}
/**
* Interleave the bits from two input integer values
* @param odd integer holding bit values for odd bit positions
* @param even integer holding bit values for even bit positions
* @return the integer that results from interleaving the input bits
*
* @todo: I'm sure there's a more elegant way of doing this !
*/
private static int interleaveBits(int odd, int even) {
int val = 0;
// Replaced this line with the improved code provided by Tuska
// int n = Math.max(Integer.highestOneBit(odd), Integer.highestOneBit(even));
int max = Math.max(odd, even);
int n = 0;
while (max > 0) {
n++;
max >>= 1;
}
for (int i = 0; i < n; i++) {
int bitMask = 1 << i;
int a = (even & bitMask) > 0 ? (1 << (2*i)) : 0;
int b = (odd & bitMask) > 0 ? (1 << (2*i+1)) : 0;
val += a + b;
}
return val;
}