Discretized continuous Fourier transform with numpy

前端 未结 1 1598
后悔当初
后悔当初 2020-12-13 02:39

Consider a function f(t), how do I compute the continuous Fouriertransform g(w) and plot it (using numpy and matplotlib)?

相关标签:
1条回答
  • 2020-12-13 03:30

    You can use the numpy FFT module for that, but have to do some extra work. First let's look at the Fourier integral and discretize it: Here k,m are integers and N the number of data points for f(t). Using this discretization we get enter image description here

    The sum in the last expression is exactly the Discrete Fourier Transformation (DFT) numpy uses (see section "Implementation details" of the numpy FFT module). With this knowledge we can write the following python script

    import numpy as np
    import matplotlib.pyplot as pl
    
    #Consider function f(t)=1/(t^2+1)
    #We want to compute the Fourier transform g(w)
    
    #Discretize time t
    t0=-100.
    dt=0.001
    t=np.arange(t0,-t0,dt)
    #Define function
    f=1./(t**2+1.)
    
    #Compute Fourier transform by numpy's FFT function
    g=np.fft.fft(f)
    #frequency normalization factor is 2*np.pi/dt
    w = np.fft.fftfreq(f.size)*2*np.pi/dt
    
    
    #In order to get a discretisation of the continuous Fourier transform
    #we need to multiply g by a phase factor
    g*=dt*np.exp(-complex(0,1)*w*t0)/(np.sqrt(2*np.pi))
    
    #Plot Result
    pl.scatter(w,g,color="r")
    #For comparison we plot the analytical solution
    pl.plot(w,np.exp(-np.abs(w))*np.sqrt(np.pi/2),color="g")
    
    pl.gca().set_xlim(-10,10)
    pl.show()
    pl.close()
    

    The resulting plot shows that the script works enter image description here

    0 讨论(0)
提交回复
热议问题