I need to calculate combinations for a number.
What is the fastest way to calculate nCp where n>>p?
I need a fast way to generate binomial coefficients for a
If you really only need the case where n is much larger than p, one way to go would be to use the Stirling's formula for the factorials. (if n>>1 and p is order one, Stirling approximate n! and (n-p)!, keep p! as it is etc.)
I recently wrote a piece of code that needed to call for a binary coefficient about 10 million times. So I did a combination lookup-table/calculation approach that's still not too wasteful of memory. You might find it useful (and my code is in the public domain). The code is at
http://www.etceterology.com/fast-binomial-coefficients
It's been suggested that I inline the code here. A big honking lookup table seems like a waste, so here's the final function, and a Python script that generates the table:
extern long long bctable[]; /* See below */
long long binomial(int n, int k) {
int i;
long long b;
assert(n >= 0 && k >= 0);
if (0 == k || n == k) return 1LL;
if (k > n) return 0LL;
if (k > (n - k)) k = n - k;
if (1 == k) return (long long)n;
if (n <= 54 && k <= 54) {
return bctable[(((n - 3) * (n - 3)) >> 2) + (k - 2)];
}
/* Last resort: actually calculate */
b = 1LL;
for (i = 1; i <= k; ++i) {
b *= (n - (k - i));
if (b < 0) return -1LL; /* Overflow */
b /= i;
}
return b;
}
#!/usr/bin/env python3
import sys
class App(object):
def __init__(self, max):
self.table = [[0 for k in range(max + 1)] for n in range(max + 1)]
self.max = max
def build(self):
for n in range(self.max + 1):
for k in range(self.max + 1):
if k == 0: b = 1
elif k > n: b = 0
elif k == n: b = 1
elif k == 1: b = n
elif k > n-k: b = self.table[n][n-k]
else:
b = self.table[n-1][k] + self.table[n-1][k-1]
self.table[n][k] = b
def output(self, val):
if val > 2**63: val = -1
text = " {0}LL,".format(val)
if self.column + len(text) > 76:
print("\n ", end = "")
self.column = 3
print(text, end = "")
self.column += len(text)
def dump(self):
count = 0
print("long long bctable[] = {", end="");
self.column = 999
for n in range(self.max + 1):
for k in range(self.max + 1):
if n < 4 or k < 2 or k > n-k:
continue
self.output(self.table[n][k])
count += 1
print("\n}}; /* {0} Entries */".format(count));
def run(self):
self.build()
self.dump()
return 0
def main(args):
return App(54).run()
if __name__ == "__main__":
sys.exit(main(sys.argv))
If you need to compute them for all n, Ribtoks's answer is probably the best. For a single n, you're better off doing like this:
C[0] = 1
for (int k = 0; k < n; ++ k)
C[k+1] = (C[k] * (n-k)) / (k+1)
The division is exact, if done after the multiplication.
And beware of overflowing with C[k] * (n-k) : use large enough integers.
I was looking for the same thing and couldn't find it, so wrote one myself that seems optimal for any Binomial Coeffcient for which the endresult fits into a Long.
// Calculate Binomial Coefficient
// Jeroen B.P. Vuurens
public static long binomialCoefficient(int n, int k) {
// take the lowest possible k to reduce computing using: n over k = n over (n-k)
k = java.lang.Math.min( k, n - k );
// holds the high number: fi. (1000 over 990) holds 991..1000
long highnumber[] = new long[k];
for (int i = 0; i < k; i++)
highnumber[i] = n - i; // the high number first order is important
// holds the dividers: fi. (1000 over 990) holds 2..10
int dividers[] = new int[k - 1];
for (int i = 0; i < k - 1; i++)
dividers[i] = k - i;
// for every dividers there is always exists a highnumber that can be divided by
// this, the number of highnumbers being a sequence that equals the number of
// dividers. Thus, the only trick needed is to divide in reverse order, so
// divide the highest divider first trying it on the highest highnumber first.
// That way you do not need to do any tricks with primes.
for (int divider: dividers) {
boolean eliminated = false;
for (int i = 0; i < k; i++) {
if (highnumber[i] % divider == 0) {
highnumber[i] /= divider;
eliminated = true;
break;
}
}
if(!eliminated) throw new Error(n+","+k+" divider="+divider);
}
// multiply remainder of highnumbers
long result = 1;
for (long high : highnumber)
result *= high;
return result;
}
nCp = n! / ( p! (n-p)! ) =
( n * (n-1) * (n-2) * ... * (n - p) * (n - p - 1) * ... * 1 ) /
( p * (p-1) * ... * 1 * (n - p) * (n - p - 1) * ... * 1 )
If we prune the same terms of the numerator and the denominator, we are left with minimal multiplication required. We can write a function in C to perform 2p multiplications and 1 division to get nCp:
int binom ( int p, int n ) {
if ( p == 0 ) return 1;
int num = n;
int den = p;
while ( p > 1 ) {
p--;
num *= n - p;
den *= p;
}
return num / den;
}
You cau use dynamic programming in order to generate binomial coefficients
You can create an array and than use O(N^2) loop to fill it
C[n, k] = C[n-1, k-1] + C[n-1, k];
where
C[1, 1] = C[n, n] = 1
After that in your program you can get the C(n, k) value just looking at your 2D array at [n, k] indices
UPDATE smth like that
for (int k = 1; k <= K; k++) C[0][k] = 0;
for (int n = 0; n <= N; n++) C[n][0] = 1;
for (int n = 1; n <= N; n++)
for (int k = 1; k <= K; k++)
C[n][k] = C[n-1][k-1] + C[n-1][k];
where the N, K - maximum values of your n, k