I\'m trying to deploy our java web application to aws elastic beanstalk using docker, the idea is to be able to run the container locally for development and testing and eve
I faced this issue. As you might agree, it is a best practice to download dependencies alone as a separate step while building the docker image. It becomes little tricky with gradle, since there is no direct support for downloading just dependencies.
Option 1 : Using docker-gradle Docker image
We can use pre-built gradle docker image to build the application. This ensures that it's not a local system build but a build done on a clean docker image.
docker volume create --name gradle-cache
docker run --rm -v gradle-cache:/home/gradle/.gradle -v "$PWD":/home/gradle/project -w /home/gradle/project gradle:4.7.0-jdk8-alpine gradle build
ls -ltrh ./build/libs
Option 2 : Multi-stage build
----- Dockerfile -----
FROM openjdk:8 AS TEMP_BUILD_IMAGE
ENV APP_HOME=/usr/app/
WORKDIR $APP_HOME
COPY build.gradle settings.gradle gradlew $APP_HOME
COPY gradle $APP_HOME/gradle
RUN ./gradlew build || return 0
COPY . .
RUN ./gradlew build
FROM openjdk:8
ENV ARTIFACT_NAME=your-application.jar
ENV APP_HOME=/usr/app/
WORKDIR $APP_HOME
COPY --from=TEMP_BUILD_IMAGE $APP_HOME/build/libs/$ARTIFACT_NAME .
EXPOSE 8080
CMD ["java","-jar",$ARTIFACT_NAME]
In the above Dockerfile
Add resolveDependencies task in build.gradle:
task resolveDependencies {
doLast {
project.rootProject.allprojects.each { subProject ->
subProject.buildscript.configurations.each { configuration ->
configuration.resolve()
}
subProject.configurations.each { configuration ->
configuration.resolve()
}
}
}
}
and update Dockerfile:
ADD build.gradle /opt/app/
WORKDIR /opt/app
RUN gradle resolveDependencies
ADD . .
RUN gradle build -x test --parallel && \
touch build/libs/api.jar
Bellow is what I do now:
build.gradle
ext {
speed = project.hasProperty('speed') ? project.getProperty('speed') : false
offlineCompile = new File("$buildDir/output/lib")
}
dependencies {
if (speed) {
compile fileTree(dir: offlineCompile, include: '*.jar')
} else {
// ...dependencies
}
}
task downloadRepos(type: Copy) {
from configurations.all
into offlineCompile
}
Dockerfile
ADD build.gradle /opt/app/
WORKDIR /opt/app
RUN gradle downloadRepos
ADD . /opt/app
RUN gradle build -Pspeed=true
You might want to consider splitting your application image to two images: one for building the myapp.war and the other for running your application. That way, you can use docker volumes during the actual build and bind the host's ~/.gradle
folder into the container performing the build. Instead of only one step to run your application, you would have more steps, though. Example:
builder image
FROM <tag name here for base image including all build time dependencies>
# Add project Source
# -> you can use a project specific gradle.properties in your project root
# in order to override global/user gradle.properties
ADD . /var/app/myapp
RUN mkdir -p /root/.gradle
ENV HOME /root
# declare shared volume path
VOLUME /root/.gradle
WORKDIR /var/app/myapp/
# Compile only
CMD ["./gradlew", "war"]
application image
FROM <tag name here for application base image>
ADD ./ROOT.war /opt/tomcat/webapps/ROOT.war
# Start Tomcat
CMD ["/opt/tomcat/bin/catalina.sh", "run"]
How to use in your project root, assuming the builder Dockerfile is located there and the application Dockerfile is located at the webapp
subfolder (or any other path you prefer):
$ docker build -t builder .
$ docker run --name=build-result -v ~/.gradle/:/root/.gradle/ builder
$ docker cp build-result:/var/app/myapp/myapp.war webapp/ROOT.war
$ cd webapp
$ docker build -t application .
$ docker run -d -P application
I haven't tested the shown code, but I hope you get the idea. The example might even be improved by using data volumes for the .gradle/ cache, see the Docker user guide for details.
try changing the gradle user home directory
RUN mkdir -p /opt/gradle/.gradle
ENV GRADLE_USER_HOME=/opt/gradle/.gradle