best structure Graph to implement Dijkstra in prolog

前端 未结 1 867
青春惊慌失措
青春惊慌失措 2020-12-11 18:50

The question is simple. How can I struct my Graph in SWI prolog to implement the Dijkstra\'s algorithm?

I have found this but it\'s too slow for my job.

相关标签:
1条回答
  • 2020-12-11 19:20

    That implementation isn't so bad:

    ?- time(dijkstra(penzance, Ss)).
    % 3,778 inferences, 0,003 CPU in 0,003 seconds (99% CPU, 1102647 Lips)
    Ss = [s(aberdeen, 682, [penzance, exeter, bristol, birmingham, manchester, carlisle, edinburgh|...]), s(aberystwyth, 352, [penzance, exeter, bristol, swansea, aberystwyth]), s(birmingham, 274, [penzance, exeter, bristol, birmingham]), s(brighton, 287, [penzance, exeter, portsmouth, brighton]), s(bristol, 188, [penzance, exeter, bristol]), s(cambridge, 339, [penzance, exeter|...]), s(cardiff, 322, [penzance|...]), s(carlisle, 474, [...|...]), s(..., ..., ...)|...].
    

    SWI-Prolog offers attributed variables, then this answer could be relevant to you. I hope I will post later today an implementation of dijkstra/2 using attribute variables.

    edit well, I must say that first time programming with attribute variables is not too much easy.

    I'm using the suggestion from the answer by @Mat I linked above, abusing of attribute variables to get constant time access to properties attached to data as required of algorithm. I've (blindly) implemented the wikipedia algorithm, here my effort:

    /*  File:    dijkstra_av.pl
        Author:  Carlo,,,
        Created: Aug  3 2012
        Purpose: learn graph programming with attribute variables
    */
    
    :- module(dijkstra_av, [dijkstra_av/3]).
    
    dijkstra_av(Graph, Start, Solution) :-
        setof(X, Y^D^(member(d(X,Y,D), Graph)
                 ;member(d(Y,X,D), Graph)), Xs),
        length(Xs, L),
        length(Vs, L),
        aggregate_all(sum(D), member(d(_, _, D), Graph), Infinity),
        catch((algo(Graph, Infinity, Xs, Vs, Start, Solution),
               throw(sol(Solution))
              ), sol(Solution), true).
    
    algo(Graph, Infinity, Xs, Vs, Start, Solution) :-
        pairs_keys_values(Ps, Xs, Vs),
        maplist(init_adjs(Ps), Graph),
        maplist(init_dist(Infinity), Ps),
        ord_memberchk(Start-Sv, Ps),
        put_attr(Sv, dist, 0),
        time(main_loop(Vs)),
        maplist(solution(Start), Vs, Solution).
    
    solution(Start, V, s(N, D, [Start|P])) :-
        get_attr(V, name, N),
        get_attr(V, dist, D),
        rpath(V, [], P).
    
    rpath(V, X, P) :-
        get_attr(V, name, N),
        (   get_attr(V, previous, Q)
        ->  rpath(Q, [N|X], P)
        ;   P = X
        ).
    
    init_dist(Infinity, N-V) :-
        put_attr(V, name, N),
        put_attr(V, dist, Infinity).
    
    init_adjs(Ps, d(X, Y, D)) :-
        ord_memberchk(X-Xv, Ps),
        ord_memberchk(Y-Yv, Ps),
        adj_add(Xv, Yv, D),
        adj_add(Yv, Xv, D).
    
    adj_add(X, Y, D) :-
        (   get_attr(X, adjs, L)
        ->  put_attr(X, adjs, [Y-D|L])
        ;   put_attr(X, adjs, [Y-D])
        ).
    
    main_loop([]).
    main_loop([Q|Qs]) :-
        smallest_distance(Qs, Q, U, Qn),
        put_attr(U, assigned, true),
        get_attr(U, adjs, As),
        update_neighbours(As, U),
        main_loop(Qn).
    
    smallest_distance([A|Qs], C, M, [T|Qn]) :-
        get_attr(A, dist, Av),
        get_attr(C, dist, Cv),
        (   Av < Cv
        ->  (N,T) = (A,C)
        ;   (N,T) = (C,A)
        ),
        !, smallest_distance(Qs, N, M, Qn).
    smallest_distance([], U, U, []).
    
    update_neighbours([V-Duv|Vs], U) :-
        (   get_attr(V, assigned, true)
        ->  true
        ;   get_attr(U, dist, Du),
            get_attr(V, dist, Dv),
            Alt is Du + Duv,
            (   Alt < Dv
            ->  put_attr(V, dist, Alt),
            put_attr(V, previous, U)
            ;   true
            )
        ),
        update_neighbours(Vs, U).
    update_neighbours([], _).
    
    :- begin_tests(dijkstra_av).
    
    test(1) :-
        nl,
        time(dijkstra_av([d(a,b,1),d(b,c,1),d(c,d,1),d(a,d,2)], a, L)),
        maplist(writeln, L).
    
    test(2) :-
        open('salesman.pl', read, F),
        readf(F, L),
        close(F),
        nl,
        dijkstra_av(L, penzance, R),
        maplist(writeln, R).
    
    readf(F, [d(X,Y,D)|R]) :-
        read(F, dist(X,Y,D)), !, readf(F, R).
    readf(_, []).
    
    :- end_tests(dijkstra_av).
    

    To be true, I prefer the code you linked in the question. There is an obvious point to optimize, smallest_distance/4 now use a dumb linear scan, using an rbtree the runtime should be better. But attributed variables must be handled with care.

    time/1 apparently show an improvement

    % 2,278 inferences, 0,003 CPU in 0,003 seconds (97% CPU, 747050 Lips)
    s(aberdeen,682,[penzance,exeter,bristol,birmingham,manchester,carlisle,edinburgh,aberdeen])
    ....
    

    but the graph is too small for any definitive assertion. Let we know if this snippet reduce the time required for your program.

    File salesman.pl contains dist/3 facts, it's taken verbatim from the link in the question.

    0 讨论(0)
提交回复
热议问题