I have a pandas data frame like the one below.
UsrId JobNos
1 4
1 56
2 23
2 55
2 41
2 5
3 78
1 25
Something like df.groupby('UsrId').JobNos.sum().idxmax()
should do it:
In [1]: import pandas as pd
In [2]: from StringIO import StringIO
In [3]: data = """UsrId JobNos
...: 1 4
...: 1 56
...: 2 23
...: 2 55
...: 2 41
...: 2 5
...: 3 78
...: 1 25
...: 3 1"""
In [4]: df = pd.read_csv(StringIO(data), sep='\s+')
In [5]: grouped = df.groupby('UsrId')
In [6]: grouped.JobNos.sum()
Out[6]:
UsrId
1 85
2 124
3 79
Name: JobNos
In [7]: grouped.JobNos.sum().idxmax()
Out[7]: 2
If you want your results based on the number of items in each group:
In [8]: grouped.size()
Out[8]:
UsrId
1 3
2 4
3 2
In [9]: grouped.size().idxmax()
Out[9]: 2
Update: To get ordered results you can use the .order
method:
In [10]: grouped.JobNos.sum().order(ascending=False)
Out[10]:
UsrId
2 124
1 85
3 79
Name: JobNos