When you are programming in a language that allows you to use automatic allocation for very large objects, when and how do you worry about stack size? Are there any rules o
In general, big allocations on the stack are bad for several reasons, not the least of which is that they can cause problems to remain well hidden for a long time.
The problem is that detecting stack overflow is not easy, and big allocations can subvert most of the commonly used methods.
If the processor has no memory management or memory protection unit, you have to be particularly careful. But event with some sort of MMU or MPU, the hardware can fail to detect a stack overflow. One common scheme, reserving a page below the stack to catch overflow, fails if the big stack object is bigger than a page. There just might be the stack of another thread sitting there and oops! you just created a very nasty, hard to find bug.
Unlimited recursion is usually easy to catch because the stack growth is usually small and will trigger the hardware protection.
my experience: when you use recursive functions, take care of the stack size!!
I have had problems running out of stack space when:
Provided I:
I don't normally have any problems, so unfortunately don't know what good defaults should be.
You start to worry about stack size when:
sample for modifiable input parameters:
in my_func(size_t input_param)
{
char buffer[input_param];
// or any other initialization of a big object on the stack
....
}
An advice:
When you are programming in a language that allows you to use automatic allocation for very large objects ...
If I want to allocate a very large object, then instead of on the stack I might allocate it on the heap but wrapped in an auto_ptr
(in which case it will be deallocated when it goes out of scope, just like a stack-resident object, but without worrying about stack size).
... when and how do you worry about stack size?
I use the stack conservatively out of habit (e.g. any object bigger than about 512 bytes is allocated on the heap instead), and I know how big the stack is (e.g. about a megabyte by default), and therefore know that I don't need to worry about it.
Are there any rules of thumb for reasoning about stack size?
When deciding whether to allocate objects on the stack vs. the heap, there are also perf issues to be taken into consideration. Allocation of memory on the stack is very fast - it just involves moving the stack pointer, whereas dynamic allocation/deallocation using new/delete or malloc/free is fairly expensive, especially in multithreaded code that doesn't have a heap per thread. If you have a function that is being called in a tight loop, you might well err on the side of putting larger objects on the stack, keeping all of the multithreading caveats mentioned in other answers in mind, even if that means having to increase stack space, which most linkers will allow you to do.