Error in na.fail.default: missing values in object - but no missing values

前端 未结 3 1316
鱼传尺愫
鱼传尺愫 2020-12-10 11:13

I am trying to run a lme model with these data:

tot_nochc=runif(10,1,15)
cor_partner=factor(c(1,1,0,1,0,0,0,0,1,0))
age=runif(10,18,75)
agecu=age^3
day=facto         


        
相关标签:
3条回答
  • 2020-12-10 11:57

    tl;dr you have to use na.exclude() (or whatever) on the whole data frame at once, so that the remaining observations stay matched up across variables ...

    set.seed(101)
    tot_nochc=runif(10,1,15)
    cor_partner=factor(c(1,1,0,1,0,0,0,0,1,0))
    age=runif(10,18,75)
    agecu=age^3
    day=factor(c(1,2,2,3,3,NA,NA,4,4,4))
    ## use data.frame() -- *DON'T* cbind() first
    dt=data.frame(tot_nochc,cor_partner,agecu,day)
    ## DON'T attach(dt) ...
    

    Now try:

    library(nlme)
    corpart.lme.1=lme(tot_nochc~cor_partner+agecu+cor_partner *agecu, 
                  random = ~cor_partner+agecu+cor_partner *agecu |day, 
                  data=dt,
                  na.action=na.exclude)
    

    We get convergence errors and warnings, but I think that's now because we're using a tiny made-up data set without enough information in it and not because of any inherent problem with the code.

    0 讨论(0)
  • 2020-12-10 12:01

    if your data contain Na or missing values you can use this it will pass the data exactly the same as it is in datasets.

    rf<-randomForest(target~.,data=train, na.action = na.roughfix)

    0 讨论(0)
  • 2020-12-10 12:05

    randomForest package has a na.roughfix function that "imputes Missing Values by median/mode"

    You can use it as follows

    fit_rf<-randomForest(store~.,
            data=store_train,
            importance=TRUE,
            prOximity=TRUE,
            na.action=na.roughfix)
    
    0 讨论(0)
提交回复
热议问题